J Timothy Lightfoot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2569542/publications.pdf

Version: 2024-02-01

257450 254184 83 1,939 24 43 citations g-index h-index papers 87 87 87 2197 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sibling Resemblances in Physical Fitness in Three Distinct Regions in Peru: The Peruvian Sibling Study on Growth and Health. Behavior Genetics, 2022, , $1.$	2.1	2
2	Systems Exercise Genetics Research Design Standards. Medicine and Science in Sports and Exercise, 2021, 53, 883-887.	0.4	4
3	Association between Mitochondrial DNA Sequence Variants and V˙O2 max Trainability. Medicine and Science in Sports and Exercise, 2020, 52, 2303-2309.	0.4	16
4	A Ketogenic Diet In Mice Reduces Cardiac Protein Synthesis Compared to a Western Diet. Current Developments in Nutrition, 2020, 4, nzaa046_015.	0.3	0
5	Comparable Organ Protein Fractional Synthesis Rate of High and Low-Active Mice. Current Developments in Nutrition, 2020, 4, nzaa066_005.	0.3	0
6	Mitochondrial DNA lesions and copy number are strain dependent in enduranceâ€trained mice. Physiological Reports, 2020, 8, e14605.	1.7	2
7	A High Fat/High Sugar Diet Alters the Gastrointestinal Metabolome in a Sex Dependent Manner. Metabolites, 2020, 10, 421.	2.9	4
8	Activated whole-body arginine pathway in high-active mice. PLoS ONE, 2020, 15, e0235095.	2.5	1
9	Protein fractional synthesis rates within tissues of high- and low-active mice. PLoS ONE, 2020, 15, e0242926.	2.5	6
10	Postnatal wheel running mitigates endocrine disruption of mammary gland development in mice. Fundamental Toxicological Sciences, 2020, 7, 189-199.	0.6	0
11	Expression Of Tyrosine Hydroxylase In The Nucleus Accumbens Are Not Altered By Diet Or Fecal Transplantation In Male C57bl/6j Mice. Medicine and Science in Sports and Exercise, 2020, 52, 625-625.	0.4	0
12	Activated whole-body arginine pathway in high-active mice., 2020, 15, e0235095.		0
13	Activated whole-body arginine pathway in high-active mice. , 2020, 15, e0235095.		0
14	Activated whole-body arginine pathway in high-active mice., 2020, 15, e0235095.		0
15	Activated whole-body arginine pathway in high-active mice. , 2020, 15, e0235095.		0
16	Protein fractional synthesis rates within tissues of high- and low-active mice., 2020, 15, e0242926.		0
17	Protein fractional synthesis rates within tissues of high- and low-active mice., 2020, 15, e0242926.		0
18	Protein fractional synthesis rates within tissues of high- and low-active mice. , 2020, 15, e0242926.		0

#	Article	IF	Citations
19	Protein fractional synthesis rates within tissues of high- and low-active mice. , 2020, 15, e0242926.		O
20	Alleles associated with physical activity levels are estimated to be older than anatomically modern humans. PLoS ONE, 2019, 14, e0216155.	2 . 5	3
21	The Physiology of Auto Racing. Medicine and Science in Sports and Exercise, 2019, 51, 2548-2562.	0.4	16
22	Association Between Mitochondrial Dna Sequence, Heteroplasmy, And Indels With Response To Aerobic Exercise Training. Medicine and Science in Sports and Exercise, 2019, 51, 574-574.	0.4	0
23	Inter-individual variation in adaptations to endurance and resistance exercise training: genetic approaches towards understanding a complex phenotype. Mammalian Genome, 2018, 29, 48-62.	2.2	34
24	Biological/Genetic Regulation of Physical Activity Level. Medicine and Science in Sports and Exercise, 2018, 50, 863-873.	0.4	80
25	Alleles Associated with Voluntary Physical Activity are Predicted to be Older Than Anatomically Modern Humans. Medicine and Science in Sports and Exercise, 2018, 50, 348.	0.4	0
26	Calorie Restriction Promotes Constant Physical Activity Levels Throughout Total Lifetime of Female Mice. Medicine and Science in Sports and Exercise, 2018, 50, 750.	0.4	0
27	High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement. Frontiers in Physiology, 2017, 8, 628.	2.8	25
28	Environmental Endocrine Disruptor Affects Voluntary Physical Activity in Mice. Medicine and Science in Sports and Exercise, 2016, 48, 1251-1258.	0.4	9
29	The Effect of a High Fat/High Sugar Diet on Physical Activity in Female Mice. Medicine and Science in Sports and Exercise, 2016, 48, 386.	0.4	0
30	Effect of High Fat/High Sugar Diet & Physical Activity on Sex Hormone Concentrations. Medicine and Science in Sports and Exercise, 2016, 48, 634.	0.4	0
31	Differential miRNA expression in inherently high- and low-active inbred mice. Physiological Reports, 2015, 3, e12469.	1.7	13
32	Comparison of Neurocognitive Testing and the Measurement of Marinobufagenin in Mild Traumatic Brain Injury: A Preliminary Report. Journal of Experimental Neuroscience, 2015, 9, JEN.S27921.	2.3	20
33	Differential protein expression in the nucleus accumbens of high and low active mice. Behavioural Brain Research, 2015, 291, 283-288.	2.2	12
34	Lessons learned from vivo-morpholinos: How to avoid vivo-morpholino toxicity. BioTechniques, 2014, 56, 251-256.	1.8	50
35	Differential Gene Expression in High- and Low-Active Inbred Mice. BioMed Research International, 2014, 2014, 1-9.	1.9	11
36	Genetics of Regular Exercise and Sedentary Behaviors. Twin Research and Human Genetics, 2014, 17, 262-271.	0.6	61

#	Article	IF	Citations
37	Differential skeletal muscle proteome of high- and low-active mice. Journal of Applied Physiology, 2014, 116, 1057-1067.	2.5	17
38	Exercise Biology and Medicine: Innovative Research to Improve Global Health. Mayo Clinic Proceedings, 2014, 89, 148-153.	3.0	31
39	Why Control Activity? Evolutionary Selection Pressures Affecting the Development of Physical Activity Genetic and Biological Regulation. BioMed Research International, 2013, 2013, 1-10.	1.9	15
40	Vivo-Morpholinos Induced Transient Knockdown of Physical Activity Related Proteins. PLoS ONE, 2013, 8, e61472.	2.5	21
41	Effects of Aromatase Inhibition on the Physical Activity Levels of Male Mice. Journal of Steroids & Hormonal Science, 2013, 04, 1-7.	0.1	16
42	Effects of Supraphysiological Doses of Sex Steroids on Wheel Running Activity in Mice. Journal of Steroids & Hormonal Science, 2012, 03, 110.	0.1	22
43	Knockâ€down of Vmat2 in Mouse Right Striatum and Physical Activity. FASEB Journal, 2012, 26, 1151.11.	0.5	0
44	The effect of Vivoâ€Morpholino targeting Vmat2 on daily physical activity in mouse soleus compared to scrambledmorpholino control. FASEB Journal, 2012, 26, 716.8.	0.5	0
45	Current Understanding of the Genetic Basis for Physical Activity. Journal of Nutrition, 2011, 141, 526-530.	2.9	54
46	Sex Hormone Effects on Physical Activity Levels. Sports Medicine, 2011, 41, 73-86.	6.5	41
47	Epistatic interactions of genes influence within-individual variation of physical activity traits in mice. Genetica, 2011, 139, 813-821.	1.1	8
48	The effect of vivoâ€Morpholinos on Dopamine Receptor 1 (Drd1) and physical activity in mice. FASEB Journal, 2011, 25, 863.1.	0.5	1
49	Physical Activity and Food Consumption in High- and Low-Active Inbred Mouse Strains. Medicine and Science in Sports and Exercise, 2010, 42, 1826-1833.	0.4	17
50	A search for quantitative trait loci controlling within-individual variation of physical activity traits in mice. BMC Genetics, 2010, 11, 83.	2.7	16
51	Does the difference between physically active and couch potato lie in the dopamine system?. International Journal of Biological Sciences, 2010, 6, 133-150.	6.4	120
52	Driven to Be Inactive?—The Genetics of Physical Activity. Progress in Molecular Biology and Translational Science, 2010, 94, 271-290.	1.7	26
53	Strain screen and haplotype association mapping of wheel running in inbred mouse strains. Journal of Applied Physiology, 2010, 109, 623-634.	2.5	79
54	Differential Gene Expression in High and Low active Animals Medicine and Science in Sports and Exercise, 2010, 42, 99.	0.4	0

#	Article	IF	CITATIONS
55	Genetic variation in the pleiotropic association between physical activity and body weight in mice. Genetics Selection Evolution, 2009, 41, 41.	3.0	26
56	Genetic variation for body weight change in mice in response to physical exercise. BMC Genetics, 2009, 10, 58.	2.7	16
57	Altered dopaminergic profiles: Implications for the regulation of voluntary physical activity. Behavioural Brain Research, 2009, 204, 147-152.	2.2	78
58	Repeatability of exercise behaviors in mice. Physiology and Behavior, 2009, 98, 433-440.	2.1	64
59	Quantitative trait loci for physical activity traits in mice. Physiological Genomics, 2008, 32, 401-408.	2.3	90
60	An Epistatic Genetic Basis for Physical Activity Traits in Mice. Journal of Heredity, 2008, 99, 639-646.	2.4	45
61	Sex Hormones' Regulation of Rodent Physical Activity: A Review. International Journal of Biological Sciences, 2008, 4, 126-132.	6.4	111
62	Commentary on Viewpoint: Perspective on the future use of genomics in exercise prescription. Journal of Applied Physiology, 2008, 104, 1249-1249.	2.5	7
63	Quantitative trait loci associated with maximal exercise endurance in mice. Journal of Applied Physiology, 2007, 103, 105-110.	2.5	29
64	Activity Level in Mice is not Associated with Dopamine 2 Receptor Expression in Heart or Muscle Tissue. Medicine and Science in Sports and Exercise, 2007, 39, S278.	0.4	0
65	Experimentally evolving exercise endurance: one step at a time. Journal of Applied Physiology, 2006, 101, 1277-1278.	2.5	0
66	Influence of Age of Exposure to a Running Wheel on Activity in Inbred Mice. Medicine and Science in Sports and Exercise, 2006, 38, 51-56.	0.4	12
67	Physical Activity in Second Generation Crossbred Male Mice. Medicine and Science in Sports and Exercise, 2006, 38, S48.	0.4	0
68	Influence of Daily Running Wheel Activity on Immune Response to Infection with Murine Gammaherpesvirus-68. Medicine and Science in Sports and Exercise, 2006, 38, S31.	0.4	0
69	Fine Map Genotyping of Exercise Endurance Quantitative Trait Loci (QTLs). Medicine and Science in Sports and Exercise, 2006, 38, S366.	0.4	0
70	Influence of genetic background on daily running-wheel activity differs with aging. Physiological Genomics, 2005, 22, 76-85.	2.3	85
71	Genetic influence on daily wheel running activity level. Physiological Genomics, 2004, 19, 270-276.	2.3	209
72	The effects of breathing 5% CO2on human cardiovascular responses and tolerance to orthostatic stress. Experimental Physiology, 2004, 89, 465-471.	2.0	20

#	Article	IF	CITATION
73	A wide range of baroreflex stimulation does not alter forearm blood flow. European Journal of Applied Physiology, 2004, 93, 124-129.	2.5	0
74	Daily Physical Activity Level in Male Inbred Mouse Strains. Medicine and Science in Sports and Exercise, 2004, 36, S260.	0.4	0
75	The effects of isometric exercise training on resting blood pressure and orthostatic tolerance in humans. Experimental Physiology, 2002, 87, 507-515.	2.0	51
76	Interstrain variation in murine aerobic capacity. Medicine and Science in Sports and Exercise, 2001, 33, 2053-2057.	0.4	85
77	The reproducibility of tolerance to lower-body negative pressure and its quantification. European Journal of Applied Physiology, 2001, 84, 462-468.	2.5	27
78	Reproducibility of Resting Heart Rate Variability With Short Sampling Periods. Applied Physiology, Nutrition, and Metabolism, 1999, 24, 337-348.	1.7	37
79	Ambient noise interferes with auscultatory blood pressure measurement during exercise. Medicine and Science in Sports and Exercise, 1996, 28, 502-508.	0.4	15
80	Quantification of tolerance to lower body negative pressure in a healthy population. Medicine and Science in Sports and Exercise, 1995, 27, 697???706.	0.4	21
81	Can Blood Pressure be Measured During Exercise?. Sports Medicine, 1991, 12, 290-301.	6.5	12
82	Automated blood pressure measurements during exercise. Medicine and Science in Sports and Exercise, 1989, 21, i.	0.4	38
83	Promoting the STEM Pipeline and Enhancing STEM Career Awareness Through Participation in Authentic Research Activities (RTP, Diversity). , 0, , .		0