Kuo-Wei Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2569054/publications.pdf

Version: 2024-02-01

105 papers

4,747 citations

71102 41 h-index 110387 64 g-index

106 all docs

 $\begin{array}{c} 106 \\ \\ \text{docs citations} \end{array}$

106 times ranked 5528 citing authors

#	Article	IF	Citations
1	Aberrant miR-10b, miR-372, and miR-375 expression in the cytobrushed samples from oral potentially malignant disorders. Journal of Dental Sciences, 2022, 17, 688-695.	2.5	4
2	The upregulation of oncogenic miRNAs in swabbed samples obtained from oral premalignant and malignant lesions. Clinical Oral Investigations, 2022, 26, 1343-1351.	3.0	5
3	Exploiting salivary miR-375 as a clinical biomarker of oral potentially malignant disorder. Journal of Dental Sciences, 2022, 17, 659-665.	2.5	6
4	A digital photograph study evaluating facial taperness and square face perception of Taiwanese females. Journal of the Chinese Medical Association, 2021, 84, 314-319.	1.4	0
5	LncRNA MIR31HG Drives Oncogenicity by Inhibiting the Limb-Bud and Heart Development Gene (LBH) during Oral Carcinoma. International Journal of Molecular Sciences, 2021, 22, 8383.	4.1	8
6	miR-31-NUMB Cascade Modulates Monocarboxylate Transporters to Increase Oncogenicity and Lactate Production of Oral Carcinoma Cells. International Journal of Molecular Sciences, 2021, 22, 11731.	4.1	5
7	Precise Identification of Recurrent Somatic Mutations in Oral Cancer Through Whole-Exome Sequencing Using Multiple Mutation Calling Pipelines. Frontiers in Oncology, 2021, 11, 741626.	2.8	7
8	Detection of Oral Dysplastic and Early Cancerous Lesions by Polarization-Sensitive Optical Coherence Tomography. Cancers, 2020, 12, 2376.	3.7	13
9	Activation of the miR-371/372/373 miRNA Cluster Enhances Oncogenicity and Drug Resistance in Oral Carcinoma Cells. International Journal of Molecular Sciences, 2020, 21, 9442.	4.1	16
10	Establishment of a p53 Null Murine Oral Carcinoma Cell Line and the Identification of Genetic Alterations Associated with This Carcinoma. International Journal of Molecular Sciences, 2020, 21, 9354.	4.1	10
11	Regulatory Role of Hexokinase 2 in Modulating Head and Neck Tumorigenesis. Frontiers in Oncology, 2020, 10, 176.	2.8	24
12	The miR-372-ZBTB7A Oncogenic Axis Suppresses TRAIL-R2 Associated Drug Sensitivity in Oral Carcinoma. Frontiers in Oncology, 2020, 10, 47.	2.8	21
13	Overexpression of Platelet-Derived Growth Factor and Its Receptor Are Correlated with Oral Tumorigenesis and Poor Prognosis in Oral Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2020, 21, 2360.	4.1	31
14	Quantification of structural and microvascular changes for diagnosing early-stage oral cancer. Biomedical Optics Express, 2020, 11, 1244.	2.9	10
15	Targeting Cellular Metabolism Modulates Head and Neck Oncogenesis. International Journal of Molecular Sciences, 2019, 20, 3960.	4.1	23
16	Establishment of syngeneic murine model for oral cancer therapy. Oral Oncology, 2019, 95, 194-201.	1.5	19
17	MicroRNA miR-31 targets SIRT3 to disrupt mitochondrial activity and increase oxidative stress in oral carcinoma. Cancer Letters, 2019, 456, 40-48.	7.2	65
18	Establishing of mouse oral carcinoma cell lines derived from transgenic mice and their use as syngeneic tumorigenesis models. BMC Cancer, 2019, 19, 281.	2.6	20

#	Article	IF	Citations
19	miR-125b suppresses oral oncogenicity by targeting the anti-oxidative gene PRXL2A. Redox Biology, 2019, 22, 101140.	9.0	75
20	SMAD4 Somatic Mutations in Head and Neck Carcinoma Are Associated With Tumor Progression. Frontiers in Oncology, 2019, 9, 1379.	2.8	28
21	IFIT1 and IFIT3 promote oral squamous cell carcinoma metastasis and contribute to the anti-tumor effect of gefitinib via enhancing p-EGFR recycling. Oncogene, 2019, 38, 3232-3247.	5. 9	55
22	Targeting of <i>miRâ€31/96/182</i> to the <i>Numb</i> gene during head and neck oncogenesis. Head and Neck, 2018, 40, 808-817.	2.0	15
23	The correlation between HIF-1 alpha and VEGF in oral squamous cell carcinomas: Expression patterns and quantitative immunohistochemical analysis. Journal of the Chinese Medical Association, 2018, 81, 370-375.	1.4	13
24	Portland cement induces human periodontal ligament cells to differentiate by upregulating miR-146a. Journal of the Formosan Medical Association, 2018, 117, 308-315.	1.7	19
25	Increased Plasma Circulating Cell-Free DNA Could Be a Potential Marker for Oral Cancer. International Journal of Molecular Sciences, 2018, 19, 3303.	4.1	56
26	Eicosanoids and HB-EGF/EGFR in cancer. Cancer and Metastasis Reviews, 2018, 37, 385-395.	5.9	19
27	<i>miRâ€134</i> targets <i>PDCD7</i> to reduce Eâ€cadherin expression and enhance oral cancer progression. International Journal of Cancer, 2018, 143, 2892-2904.	5.1	58
28	Combination of structural and vascular optical coherence tomography for differentiating oral lesions of mice in different carcinogenesis stages. Biomedical Optics Express, 2018, 9, 1461.	2.9	20
29	FAT1 somatic mutations in head and neck carcinoma are associated with tumor progression and survival. Carcinogenesis, 2018, 39, 1320-1330.	2.8	54
30	MicroRNA-21 promotes perineural invasion and impacts survival in patients with oral carcinoma. Journal of the Chinese Medical Association, 2017, 80, 383-388.	1.4	36
31	<i>miR-31</i> targets ARID1A and enhances the oncogenicity and stemness of head and neck squamous cell carcinoma. Oncotarget, 2016, 7, 57254-57267.	1.8	42
32	MicroRNA-211 Enhances the Oncogenicity of Carcinogen-Induced Oral Carcinoma by Repressing TCF12 and Increasing Antioxidant Activity. Cancer Research, 2016, 76, 4872-4886.	0.9	97
33	Up-regulation of HB-EGF by the COX-2/PGE2 signaling associates with the cisplatin resistance and tumor recurrence of advanced HNSCC. Oral Oncology, 2016, 56, 54-61.	1.5	11
34	Coâ€targeting of multiple microRNAs on factorâ€Inhibiting hypoxiaâ€Inducible factor gene for the pathogenesis of head and neck carcinomas. Head and Neck, 2016, 38, 522-528.	2.0	10
35	MicroRNA-31 upregulation predicts increased risk of progression of oral potentially malignant disorder. Oral Oncology, 2016, 53, 42-47.	1.5	75
36	Up-regulation of <i>miR-187</i> modulates the advances of oral carcinoma by targeting <i>BARX2</i> tumor suppressor. Oncotarget, 2016, 7, 61355-61365.	1.8	35

3

#	Article	IF	Citations
37	<i>K14â€EGFPâ€miRâ€31</i> transgenic mice have high susceptibility to chemicalâ€induced squamous cell tumorigenesis that is associating with Ku80 repression. International Journal of Cancer, 2015, 136, 1263-1275.	5.1	36
38	Upregulation of mi <scp>R</scp> â€372 and â€373 associates with lymph node metastasis and poor prognosis of oral carcinomas. Laryngoscope, 2015, 125, E365-70.	2.0	50
39	The increase of oncogenic miRNA expression in tongue carcinogenesis of a mouse model. Oral Oncology, 2015, 51, 1103-1112.	1.5	33
40	Hinokitiol suppressed pan-histone expression and cell growth in oral squamous cell carcinoma cells. Journal of Functional Foods, 2015, 15, 452-463.	3.4	11
41	Molecular and cellular cues of dietâ€associated oral carcinogenesis—with an emphasis on arecaâ€nutâ€induced oral cancer development. Journal of Oral Pathology and Medicine, 2015, 44, 167-177.	2.7	33
42	Abstract 4000: The increase of oncogenic miRNA expression in tongue carcinogenesis of a mouse model. , 2015 , , .		1
43	<i>miR-372</i> inhibits p62 in head and neck squamous cell carcinoma <i>in vitro</i> and <i>in vivo</i> Oncotarget, 2015, 6, 6062-6075.	1.8	50
44	Evaluation Physical Characteristics and Comparison Antimicrobial and Anti-Inflammation Potentials of Dental Root Canal Sealers Containing Hinokitiol In Vitro. PLoS ONE, 2014, 9, e94941.	2.5	48
45	miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes. Carcinogenesis, 2014, 35, 1162-1171.	2.8	82
46	<i>miRâ€134</i> induces oncogenicity and metastasis in head and neck carcinoma through targeting <i>WWOX</i> gene. International Journal of Cancer, 2014, 134, 811-821.	5.1	110
47	EGF Up-Regulates miR-31 through the C/EBPl 2 Signal Cascade in Oral Carcinoma. PLoS ONE, 2014, 9, e108049.	2.5	50
48	Lysyl oxidase and enhancement of cell proliferation and angiogenesis in oral squamous cell carcinoma. Head and Neck, 2013, 35, 250-256.	2.0	29
49	Passenger strand miRNA miR-31a^— regulates the phenotypes of oral cancer cells by targeting RhoA. Oral Oncology, 2013, 49, 27-33.	1.5	56
50	miR-211 promotes the progression of head and neck carcinomas by targeting TGF \hat{l}^2 RII. Cancer Letters, 2013, 337, 115-124.	7.2	79
51	MicroRNA aberrances in head and neck cancer. Current Opinion in Otolaryngology and Head and Neck Surgery, 2013, 21, 104-111.	1.8	77
52	miR-146a Enhances the Oncogenicity of Oral Carcinoma by Concomitant Targeting of the IRAK1, TRAF6 and NUMB Genes. PLoS ONE, 2013, 8, e79926.	2.5	114
53	Lipopolysaccharide Induces the Migration of Human Dental Pulp Cells by Up-regulating miR-146a. Journal of Endodontics, 2012, 38, 1598-1603.	3.1	21
54	The Association between Genetic Polymorphism and the Processing Efficiency of miR-149 Affects the Prognosis of Patients with Head and Neck Squamous Cell Carcinoma. PLoS ONE, 2012, 7, e51606.	2.5	51

#	Article	IF	Citations
55	Association between the rs2910164 polymorphism in pre-mir-146a and oral carcinoma progression. Oral Oncology, 2012, 48, 404-408.	1.5	93
56	Exploiting salivary <i>miRâ€31</i> as a clinical biomarker of oral squamous cell carcinoma. Head and Neck, 2012, 34, 219-224.	2.0	196
57	Association between arecaâ€stimulated vimentin expression and the progression of head and neck cancers. Head and Neck, 2012, 34, 245-253.	2.0	8
58	Serum decoy receptor 3 level: A predictive marker for nodal metastasis and survival among oral cavity cancer patients. Head and Neck, 2011, 33, 396-402.	2.0	16
59	Lysyl oxidase-like 3 mRNA expression indicates poor survival from oral squamous cell carcinoma. Journal of Dental Sciences, 2011, 6, 205-209.	2.5	7
60	Areca nut extract upregulates vimentin by activating PI3K/AKT signaling in oral carcinoma. Journal of Oral Pathology and Medicine, 2011, 40, 160-166.	2.7	17
61	The frequent co-expression of the oncogenes PIK3CA and PAK1 in oral carcinomas. Oral Oncology, 2011, 47, 211-216.	1.5	13
62	MicroRNAâ€200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. Journal of Pathology, 2011, 223, 482-495.	4.5	115
63	Impact of Diabetes Mellitus on the Prognosis of Patients with Oral Squamous Cell Carcinoma: A Retrospective Cohort Study. Annals of Surgical Oncology, 2010, 17, 2175-2183.	1.5	44
64	miR-24 up-regulation in oral carcinoma: Positive association from clinical and in vitro analysis. Oral Oncology, 2010, 46, 204-208.	1.5	142
65	Curcumin upregulates insulinâ€like growth factor binding proteinâ€5 (IGFBPâ€5) and C/EBPα during oral cancer suppression. International Journal of Cancer, 2010, 127, 9-20.	5.1	46
66	Nuclear STK15 expression is associated with aggressive behaviour of oral carcinoma cells <i>in vivo</i> and <i>in vitro</i> Journal of Pathology, 2010, 222, 99-109.	4.5	17
67	<i>miR-31</i> Ablates Expression of the HIF Regulatory Factor FIH to Activate the HIF Pathway in Head and Neck Carcinoma. Cancer Research, 2010, 70, 1635-1644.	0.9	303
68	Areca nut extract induced oxidative stress and upregulated hypoxia inducing factor leading to autophagy in oral cancer cells. Autophagy, 2010, 6, 725-737.	9.1	73
69	Expression of phosphorylated Akt in oral carcinogenesis and its induction by nicotine and alkaline stimulation. Journal of Oral Pathology and Medicine, 2009, 38, 206-213.	2.7	37
70	Association between lysyl oxidase polymorphisms and oral submucous fibrosis in older male areca chewers. Journal of Oral Pathology and Medicine, 2009, 38, 109-113.	2.7	26
71	Areca nut extractâ€treated gingival fibroblasts modulate the invasiveness of polymorphonuclear leukocytes via the production of MMPâ€2. Journal of Oral Pathology and Medicine, 2009, 38, 79-86.	2.7	10
72	Presurgical serum levels of matrix metalloproteinase-9 and vascular endothelial growth factor in oral squamous cell carcinoma. Oral Oncology, 2009, 45, 920-925.	1.5	29

#	Article	IF	CITATIONS
73	Detection of copy number amplification of cyclin D1 (CCND1) and cortactin (CTTN) in oral carcinoma and oral brushed samples from areca chewers. Oral Oncology, 2009, 45, 1032-1036.	1.5	28
74	Detection and Screening of Oral Cancer and Pre-cancerous Lesions. Journal of the Chinese Medical Association, 2009, 72, 227-233.	1.4	55
75	Association of epidermal growth factor receptor (EGFR) gene copy number amplification with neck lymph node metastasis in areca-associated oral carcinomas. Oral Oncology, 2008, 44, 270-276.	1.5	55
76	Increase of disintergin metalloprotease 10 (ADAM10) expression in oral squamous cell carcinoma. Cancer Letters, 2007, 245, 33-43.	7.2	81
77	The repressive effect of green tea ingredients on amyloid precursor protein (APP) expression in oral carcinoma cells in vitro and in vivo. Cancer Letters, 2007, 245, 81-89.	7.2	19
78	Association of Expression Aberrances and Genetic Polymorphisms of <i>Lysyl Oxidase</i> with Areca-Associated Oral Tumorigenesis. Clinical Cancer Research, 2007, 13, 4378-4385.	7.0	62
79	Areca nut extract treatment down-regulates involucrin in normal human oral keratinocyte through P13K/AKT activation. Oral Oncology, 2007, 43, 670-679.	1.5	30
80	Functional polymorphism in NFKB1 promoter is related to the risks of oral squamous cell carcinoma occurring on older male areca (betel) chewers. Cancer Letters, 2006, 243, 47-54.	7.2	82
81	Array-comparative genomic hybridization to detect genomewide changes in microdissected primary and metastatic oral squamous cell carcinomas. Molecular Carcinogenesis, 2006, 45, 721-731.	2.7	81
82	Ripe areca nut extract induces G 1 phase arrests and senescence-associated phenotypes in normal human oral keratinocyte. Carcinogenesis, 2006, 27, 1273-1284.	2.8	79
83	Frequent microsatellite alterations of chromosome locus 4q13.1 in oral squamous cell carcinomas. Journal of Oral Pathology and Medicine, 2005, 34, 209-213.	2.7	14
84	Association of GST genotypes with age of onset and lymph node metastasis in oral squamous cell carcinoma. Journal of Oral Pathology and Medicine, 2005, 34, 473-477.	2.7	19
85	Areca (betel) nut extract activates mitogen-activated protein kinasesand NF- \hat{l}^2 B in oral keratinocytes. International Journal of Cancer, 2005, 116 , 526 - 535 .	5.1	86
86	Copy number amplification of 3q26–27 oncogenes in microdissected oral squamous cell carcinoma and oral brushed samples from areca chewers. Journal of Pathology, 2005, 206, 417-422.	4.5	36
87	The molecular markers for prognostic evaluation of arecaâ€associated buccal squamous cell carcinoma. Journal of Oral Pathology and Medicine, 2004, 33, 327-334.	2.7	20
88	Genome-wide profiling of oral squamous cell carcinoma. Journal of Pathology, 2004, 204, 326-332.	4.5	141
89	Increased expression of amyloid precursor protein in oral squamous cell carcinoma. International Journal of Cancer, 2004, 111, 727-732.	5.1	62
90	<i>Cyclin D1</i> genotype in arecaâ€essociated oral squamous cell carcinoma. Journal of Oral Pathology and Medicine, 2003, 32, 265-270.	2.7	33

#	Article	IF	CITATIONS
91	Elevated expression of cyclooxygenase (COX)-2 in oral squamous cell carcinoma - evidence for COX-2 induction by areca quid ingredients in oral keratinocytes. Journal of Oral Pathology and Medicine, 2003, 32, 522-529.	2.7	40
92	The biphasic differential expression of the cellular membrane protein, caveolin-1, in oral carcinogenesis. Journal of Oral Pathology and Medicine, 2003, 32, 461-467.	2.7	52
93	The increase of voltage-gated potassium channel Kv3.4 mRNA expression in oral squamous cell carcinoma. Journal of Oral Pathology and Medicine, 2003, 32, 606-611.	2.7	38
94	Chromosomal changes in betel-associated oral squamous cell carcinomas and their relationship to clinical parameters. Oral Oncology, 2002, 38, 266-273.	1.5	56
95	Multiple molecular alterations ofFHIT in betel-associated oral carcinoma. Journal of Pathology, 2002, 196, 300-306.	4.5	35
96	Regulation of IGFBP-5 expression during tumourigenesis and differentiation of oral keratinocytes. Journal of Pathology, 2002, 198, 317-325.	4.5	39
97	Association of aberrant p53 and p21 WAF1 immunoreactivity with the outcome of oral verrucous leukoplakia in Taiwan. Journal of Oral Pathology and Medicine, 2000, 29, 56-62.	2.7	29
98	Alterations of p16/MTS1 gene in oral squamous cell carcinomas from Taiwanese. Journal of Oral Pathology and Medicine, 2000, 29, 159-166.	2.7	37
99	Alterations of Adenomatous Polyposis Coli (APC) gene in oral squamous cell carcinoma. International Journal of Oral and Maxillofacial Surgery, 2000, 29, 223-226.	1.5	23
100	Safrole-like DNA adducts in oral tissue from oral cancer patients with a betel quid chewing history. Carcinogenesis, 1999, 20, 2331-2334.	2.8	96
101	Telomerase activity and <i>in situ</i> telomerase RNA expression in oral carcinogenesis. Journal of Oral Pathology and Medicine, 1999, 28, 389-396.	2.7	35
102	<i>>p53</i> alterations in betel quid―and tobaccoâ€associated oral squamous cell carcinomas from Taiwan. Journal of Oral Pathology and Medicine, 1998, 27, 243-248.	2.7	34
103	MTS1 gene mutations in archival oral squamous cell carcinomas. Journal of Oral Pathology and Medicine, 1996, 25, 541-546.	2.7	10
104	Continuing root formation following apexification treatment. Dental Traumatology, 1990, 6, 232-235.	2.0	19
105	High prevalence of human papillomavirus infection and possible association with betel quid chewing and smoking in oral epidermoid carcinomas in taiwan. Journal of Medical Virology, 1989, 28, 57-61.	5.0	90