Nick Giannoukakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2568680/publications.pdf

Version: 2024-02-01

623734 361022 1,235 37 14 35 citations g-index h-index papers 37 37 37 1362 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phase I (Safety) Study of Autologous Tolerogenic Dendritic Cells in Type 1 Diabetic Patients. Diabetes Care, 2011, 34, 2026-2032.	8.6	364
2	Antisense Oligonucleotides Down-Regulating Costimulation Confer Diabetes-Preventive Properties to Nonobese Diabetic Mouse Dendritic Cells. Journal of Immunology, 2004, 173, 4331-4341.	0.8	161
3	A Microsphere-Based Vaccine Prevents and Reverses New-Onset Autoimmune Diabetes. Diabetes, 2008, 57, 1544-1555.	0.6	91
4	Prevention of Diabetes in NOD Mice by Administration of Dendritic Cells Deficient in Nuclear Transcription Factor-ÂB Activity. Diabetes, 2003, 52, 1976-1985.	0.6	86
5	Generation of antigen-specific Foxp3+ regulatory T-cells in vivo following administration of diabetes-reversing tolerogenic microspheres does not require provision of antigen in the formulation. Clinical Immunology, 2015, 160, 103-123.	3.2	58
6	Retinoic acid-producing, ex vivo-generated human tolerogenic dendritic cells induce the proliferation of immunosuppressive B-lymphocytes. Clinical and Experimental Immunology, 2013, 174, n/a-n/a.	2.6	51
7	It's Time to Bring Dendritic Cell Therapy to Type 1 Diabetes. Diabetes, 2014, 63, 20-30.	0.6	50
8	Involvement of Suppressive B-Lymphocytes in the Mechanism of Tolerogenic Dendritic Cell Reversal of Type 1 Diabetes in NOD Mice. PLoS ONE, 2014, 9, e83575.	2.5	44
9	Toward a cure for type 1 diabetes mellitus: diabetes-suppressive dendritic cells and beyond. Pediatric Diabetes, 2008, 9, 4-13.	2.9	38
10	A role for tolerogenic dendritic cell-induced B-regulatory cells in type 1 diabetes mellitus. Current Opinion in Endocrinology, Diabetes and Obesity, 2012, 19, 279-287.	2.3	31
11	Ranirestat as a therapeutic aldose reductase inhibitor for diabetic complications. Expert Opinion on Investigational Drugs, 2008, 17, 575-581.	4.1	27
12	Current State of Type 1 Diabetes Immunotherapy: Incremental Advances, Huge Leaps, or More of the Same?. Clinical and Developmental Immunology, 2011, 2011, 1-18.	3.3	24
13	Arrest in the Progression of Type 1 Diabetes at the Mid-Stage of Insulitic Autoimmunity Using an Autoantigen-Decorated All-trans Retinoic Acid and Transforming Growth Factor Beta-1 Single Microparticle Formulation. Frontiers in Immunology, 2021, 12, 586220.	4.8	16
14	Dendritic cell therapy for Type 1 diabetes suppression. Immunotherapy, 2012, 4, 1063-1074.	2.0	15
15	Sequence Variation in Promoter of Ica1 Gene, Which Encodes Protein Implicated in Type 1 Diabetes, Causes Transcription Factor Autoimmune Regulator (AIRE) to Increase Its Binding and Down-regulate Expression. Journal of Biological Chemistry, 2012, 287, 17882-17893.	3.4	14
16	CJC-1131. ConjuChem. Current Opinion in Investigational Drugs, 2003, 4, 1245-9.	2.3	14
17	Tolerogenic dendritic cells for Type 1 diabetes. Immunotherapy, 2013, 5, 569-571.	2.0	13
18	A brief glimpse over the horizon for type 1 diabetes nanotherapeutics. Clinical Immunology, 2015, 160, 36-45.	3.2	12

#	Article	IF	Citations
19	Neutrophils and their role in the aetiopathogenesis of type 1 and type 2 diabetes. Diabetes/Metabolism Research and Reviews, 2022, 38, e3483.	4.0	12
20	Drug evaluation: ranirestat—an aldose reductase inhibitor for the potential treatment of diabetic complications. Current Opinion in Investigational Drugs, 2006, 7, 916-23.	2.3	12
21	Phosphatidylinositol-3-kinase activity during in vitro dendritic cell generation determines suppressive or stimulatory capacity. Immunologic Research, 2011, 50, 130-152.	2.9	10
22	Pyridoxamine (BioStratum). Current Opinion in Investigational Drugs, 2005, 6, 410-8.	2.3	10
23	Modulation of Leukocytes of the Innate Arm of the Immune System as a Potential Approach to Prevent the Onset and Progression of Type 1 Diabetes. Diabetes, 2021, 70, 313-322.	0.6	9
24	Gene and Cell Therapies for Diabetes Mellitus. BioDrugs, 2002, 16, 149-173.	4.6	8
25	Gene therapy technology applied to disorders of glucose metabolism: promise, achievements, and prospects. BioTechniques, 2003, 35, 122-145.	1.8	8
26	Exenatide. Amylin/Eli Lilly. Current Opinion in Investigational Drugs, 2003, 4, 459-65.	2.3	8
27	Autoimmune Inflammation and Insulin Resistance: Hallmarks So Far and Yet So Close to Explain Diabetes Endotypes. Current Diabetes Reports, 2021, 21, 54.	4.2	8
28	Current status and prospects for gene and cell therapeutics for type 1 diabetes mellitus. Reviews in Endocrine and Metabolic Disorders, 2003, 4, 369-380.	5.7	6
29	Interview: Immunoregulatory dendritic cells to treat autoimmunity are ready for the clinic. Immunotherapy, 2013, 5, 919-921.	2.0	6
30	Evaluation of ranirestat for the treatment of diabetic neuropathy. Expert Opinion on Drug Metabolism and Toxicology, 2014, 10, 1051-1059.	3.3	6
31	Drug delivery technologies for autoimmune disease. Expert Opinion on Drug Delivery, 2010, 7, 1279-1289.	5.0	4
32	Fidarestat. Sanwa Kagaku/NC Curex/Sankyo. Current Opinion in Investigational Drugs, 2003, 4, 1233-9.	2.3	4
33	BIM-51077, a dipeptidyl peptidase-IV-resistant glucagon-like peptide-1 analog. Current Opinion in Investigational Drugs, 2007, 8, 842-8.	2.3	4
34	Nanotherapeutics for autoimmunity becomes mainstream. Clinical Immunology, 2015, 160, 1-2.	3.2	3
35	Gene therapy for type 1 diabetes: a proposal to move to the next level. Current Opinion in Molecular Therapeutics, 2005, 7, 467-75.	2.8	3
36	DiaPep277 (DeveloGen). Current Opinion in Investigational Drugs, 2005, 6, 1043-50.	2.3	3

3

#	Article	IF	CITATIONS
37	Genes and engineered cells as drugs for type I and type II diabetes mellitus therapy and prevention. Current Opinion in Investigational Drugs, 2002, 3, 735-51.	2.3	2