Chih-Ching Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2568478/publications.pdf Version: 2024-02-01

		22153	22166
208	14,527	59	113
papers	citations	h-index	g-index
210	210	210	1-11-
219	219	219	15115
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Therapeutic hydrogel sheets programmed with multistage drug delivery for effective treatment of corneal abrasion. Chemical Engineering Journal, 2022, 429, 132409.	12.7	30
2	Carbon nanogels exert multipronged attack on resistant bacteria and strongly constrain resistance evolution. Journal of Colloid and Interface Science, 2022, 608, 1813-1826.	9.4	11
3	Carbon dots with polarity-tunable characteristics for the selective detection of sodium copper chlorophyllin and copper ions. Analytica Chimica Acta, 2022, 1191, 339311.	5.4	22
4	Alleviation of dry eye syndrome with one dose of antioxidant, anti-inflammatory, and mucoadhesive lysine-carbonized nanogels. Acta Biomaterialia, 2022, 141, 140-150.	8.3	27
5	In-situ formation of 2H phase MoS2/cerium-zirconium oxide nanohybrid for potential electrochemical detection of an anticancer drug flutamide. Materials Today Chemistry, 2022, 23, 100749.	3.5	5
6	Carbon-based low-pressure filtration membrane for the dynamic disruption of bacteria from contaminated water. Water Research, 2022, 212, 118121.	11.3	6
7	How to evaluate the potential toxicity of therapeutic carbon nanomaterials? A comprehensive study of carbonized nanogels with multiple animal toxicity test models. Journal of Hazardous Materials, 2022, 429, 128337.	12.4	9
8	Development of Fluorescent Carbon Nanoparticle-Based Probes for Intracellular pH and Hypochlorite Sensing. Chemosensors, 2022, 10, 64.	3.6	3
9	Exploring molecular moieties on carbonized polymer dots from flavonoid glycosides with activity against enterovirus A71. Carbon, 2022, 192, 285-294.	10.3	6
10	Development of antiviral carbon quantum dots that target the Japanese encephalitis virus envelope protein. Journal of Biological Chemistry, 2022, 298, 101957.	3.4	18
11	Ratiometric Fluorescence Probe of Vesicle-like Carbon Dots and Gold Clusters for Quantitation of Cholesterol. Chemosensors, 2022, 10, 160.	3.6	5
12	Partial carbonization of quercetin boosts the antiviral activity against H1N1 influenza A virus. Journal of Colloid and Interface Science, 2022, 622, 481-493.	9.4	9
13	Evaluation of chemotherapeutic response in living cells using subcellular Organelle‒Selective amphipathic carbon dots. Biosensors and Bioelectronics, 2022, 211, 114362.	10.1	10
14	Self-redox reaction driven in situ formation of Cu2O/Ti3C2Tx nanosheets boost the photocatalytic eradication of multi-drug resistant bacteria from infected wound. Journal of Nanobiotechnology, 2022, 20, 235.	9.1	17
15	A review on metal nanozyme-based sensing of heavy metal ions: Challenges and future perspectives. Journal of Hazardous Materials, 2021, 401, 123397.	12.4	152
16	LED irradiation of halogen/nitrogen-doped polymeric graphene quantum dots triggers the photodynamic inactivation of bacteria in infected wounds. Carbon, 2021, 174, 710-722.	10.3	30
17	Carbonized nanogels for simultaneous antibacterial and antioxidant treatment of bacterial keratitis. Chemical Engineering Journal, 2021, 411, 128469.	12.7	58
18	Toxic or Not Toxic, That Is the Carbon Quantum Dot's Question: A Comprehensive Evaluation with Zebrafish Embryo, Eleutheroembryo, and Adult Models. Polymers, 2021, 13, 1598.	4.5	24

#	Article	IF	CITATIONS
19	Carbonized Lysine-Nanogels Protect against Infectious Bronchitis Virus. International Journal of Molecular Sciences, 2021, 22, 5415.	4.1	11
20	Engineering Layered Nanostructures of Two-Dimensional Transition Metal Dichalcogenides with CeO ₂ for Nano-Level Detection of Promethazine Hydrochloride. Journal of the Electrochemical Society, 2021, 168, 077503.	2.9	2
21	Iron Hydroxide/Oxide-Reduced Graphene Oxide Nanocomposite for Dual-Modality Photodynamic and Photothermal Therapy In Vitro and In Vivo. Nanomaterials, 2021, 11, 1947.	4.1	12
22	Targeting nanocomposites with anti-oxidative/inflammatory/angiogenic activities for synergistically alleviating macular degeneration. Applied Materials Today, 2021, 24, 101156.	4.3	9
23	Controlling morphology evolution of titanium oxide–gold nanourchin for photocatalytic degradation of dyes and photoinactivation of bacteria in the infected wound. Journal of Colloid and Interface Science, 2021, 598, 260-273.	9.4	11
24	Electrocatalytic CuBr@CuO nanoparticles based salivary glucose probes. Biosensors and Bioelectronics, 2021, 194, 113610.	10.1	21
25	Thermally driven formation of polyphenolic carbonized nanogels with high anticoagulant activity from polysaccharides. Biomaterials Science, 2021, 9, 4679-4690.	5.4	9
26	Copper Sulfide Nanoassemblies for Catalytic and Photoresponsive Eradication of Bacteria from Infected Wounds. ACS Applied Materials & amp; Interfaces, 2021, 13, 7865-7878.	8.0	43
27	Catalytic and photoresponsive BiZ/Cu _{<i>x</i>} S heterojunctions with surface vacancies for the treatment of multidrug-resistant clinical biofilm-associated infections. Nanoscale, 2021, 13, 18632-18646.	5.6	9
28	Hyaluronic Acid Derived Hypoxia-Sensitive Nanocarrier for Tumor Targeted Drug Delivery. ACS Applied Bio Materials, 2021, 4, 8325-8332.	4.6	8
29	Multifunctional carbonized nanogels to treat lethal acute hepatopancreatic necrosis disease. Journal of Nanobiotechnology, 2021, 19, 448.	9.1	5
30	Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Materials, 2020, 25, 563-571.	18.0	235
31	Synthesis of molybdenum–silver orthophosphate composites for the visible-light photocatalytic degradation of various dyestuff and phenol. Journal of Materials Science: Materials in Electronics, 2020, 31, 2177-2189.	2.2	0
32	Platinum ions mediate the interactions between DNA and carbon quantum dots: diagnosis of MRSA infections. Journal of Materials Chemistry B, 2020, 8, 3506-3512.	5.8	15
33	Highly adhesive carbon quantum dots from biogenic amines for prevention of biofilm formation. Chemical Engineering Journal, 2020, 386, 123913.	12.7	64
34	Capping 1,3-propanedithiol to boost the antibacterial activity of protein-templated copper nanoclusters. Journal of Hazardous Materials, 2020, 389, 121821.	12.4	26
35	Biodistribution of Graphene Oxide Determined through Postadministration Labeling with DNA-Conjugated Gold Nanoparticles and ICPMS. Analytical Chemistry, 2020, 92, 13997-14005.	6.5	10
36	Synthesis and evaluation of polyamine carbon quantum dots (CQDs) in Litopenaeus vannamei as a therapeutic agent against WSSV. Scientific Reports, 2020, 10, 7343.	3.3	27

#	Article	IF	CITATIONS
37	Fluorescent Carbon Dots for Selective Labeling of Subcellular Organelles. ACS Omega, 2020, 5, 11248-11261.	3.5	78
38	Influences of silver halides AgX (X = Cl, Br, and I) on magnesium bismuth oxide photocatalyst in methylene blue degradation under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397, 112585.	3.9	12
39	Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli. Applied Microbiology and Biotechnology, 2020, 104, 5259-5272.	3.6	4
40	Importance of Cobalt-Doping for the Preparation of Hollow CuBr/Co@CuO Nanocorals on Copper Foils with Enhanced Electrocatalytic Activity and Stability for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 9794-9802.	6.7	13
41	Tuning the photoluminescence of metal nanoclusters for selective detection of multiple heavy metal ions. Sensors and Actuators B: Chemical, 2020, 321, 128539.	7.8	38
42	Determination of Hg(II) based on the inhibited catalytic growth of surface-enhanced Raman scattering-active gold nanoparticles on a patterned hydrophobic paper substrate. Microchemical Journal, 2020, 157, 104983.	4.5	7
43	Carbon Dots for Bacterial Detection and Antibacterial Applications-A Minireview. Current Pharmaceutical Design, 2020, 25, 4848-4860.	1.9	13
44	Carbon quantum dots for the detection of antibiotics and pesticides. Journal of Food and Drug Analysis, 2020, 28, 540-558.	1.9	20
45	Exploring the promising potential of MoS2–RuS2 binary metal sulphide towards the electrocatalysis of antibiotic drug sulphadiazine. Analytica Chimica Acta, 2019, 1086, 55-65.	5.4	42
46	An Electrochemical Detection of Vanillin Based on Carbon Black Nanoparticles Modified Screen Printed Carbon Electrode. International Journal of Electrochemical Science, 2019, 14, 5972-5983.	1.3	11
47	High Amplification of the Antiviral Activity of Curcumin through Transformation into Carbon Quantum Dots. Small, 2019, 15, e1902641.	10.0	110
48	DNA engineered copper oxide-based nanocomposites with multiple enzyme-like activities for specific detection of mercury species in environmental and biological samples. Analytica Chimica Acta, 2019, 1084, 106-115.	5.4	22
49	Dual-functional gold nanoparticles with antimicrobial and proangiogenic activities improve the healing of multidrug-resistant bacteria-infected wounds in diabetic mice. Biomaterials Science, 2019, 7, 4482-4490.	5.4	34
50	Mesoporous manganese oxide/manganese ferrite nanopopcorns with dual enzyme mimic activities: A cascade reaction for selective detection of ketoses. Journal of Colloid and Interface Science, 2019, 541, 75-85.	9.4	15
51	In situ synthesis of core-shell carbon nanowires as a potent targeted anticoagulant. Journal of Colloid and Interface Science, 2019, 552, 583-596.	9.4	9
52	Rose-Petal-Like Morphology of Yttrium Molybdate Nanosheets (YMoO4) Anchored on Functionalized Carbon Nanofibers: An Efficient Electrocatalyst for the Electrochemical Sensing of bisphenol-A. International Journal of Electrochemical Science, 2019, 14, 6571-6585.	1.3	5
53	Supramolecular Aptamers on Graphene Oxide for Efficient Inhibition of Thrombin Activity. Frontiers in Chemistry, 2019, 7, 280.	3.6	7
54	Nanoparticle-Based LDI-MS Immunoassay for the Multiple Diagnosis of Viral Infections. ACS Sensors, 2019, 4, 1543-1551.	7.8	36

#	Article	IF	CITATIONS
55	Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale, 2019, 11, 5580-5594.	5.6	66
56	A carbon dot based theranostic platform for dual-modal imaging and free radical scavenging. Nanoscale, 2019, 11, 20917-20931.	5.6	36
57	Graphene oxide and carbon dots as broad-spectrum antimicrobial agents – a minireview. Nanoscale Horizons, 2019, 4, 117-137.	8.0	204
58	Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. Journal of Colloid and Interface Science, 2019, 536, 112-126.	9.4	59
59	Synthesis of Cisplatin(IV) Prodrug-Tethered CuFeS ₂ Nanoparticles in Tumor-Targeted Chemotherapy and Photothermal Therapy. ACS Applied Materials & Interfaces, 2018, 10, 4590-4602.	8.0	54
60	Detection of urinary spermine by using silver-gold/silver chloride nanozymes. Analytica Chimica Acta, 2018, 1009, 89-97.	5.4	44
61	Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–A review. Desalination, 2018, 429, 119-133.	8.2	239
62	Graphene oxide membrane as an efficient extraction and ionization substrate for spray-mass spectrometric analysis of malachite green and its metabolite in fish samples. Analytica Chimica Acta, 2018, 1003, 42-48.	5.4	34
63	Visual detection of cyanide ions by membrane-based nanozyme assay. Biosensors and Bioelectronics, 2018, 102, 510-517.	10.1	61
64	Self-Assembled Chiral Gold Supramolecules with Efficient Laser Absorption for Enantiospecific Recognition of Carnitine. Analytical Chemistry, 2018, 90, 7283-7291.	6.5	25
65	Green synthesis of catalytic gold/bismuth oxyiodide nanocomposites with oxygen vacancies for treatment of bacterial infections. Nanoscale, 2018, 10, 11808-11819.	5.6	47
66	Self-assembled, bivalent aptamers on graphene oxide as an efficient anticoagulant. Biomaterials Science, 2018, 6, 1882-1891.	5.4	19
67	The effect of surface charge on the cytotoxicity and uptake of carbon quantum dots in human umbilical cord derived mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2018, 171, 241-249.	5.0	53
68	Fluid flow and mass transfer in an industrial-scale hollow fiber membrane contactor scaled up with small elements. International Journal of Heat and Mass Transfer, 2018, 127, 289-301.	4.8	12
69	Nanoparticle-based laser desorption/ionization mass spectrometric analysis of drugs and metabolites. Journal of Food and Drug Analysis, 2018, 26, 1215-1228.	1.9	49
70	Effect of deacetylation degree on controlled pilocarpine release from injectable chitosan-g-poly(N-isopropylacrylamide) carriers. Carbohydrate Polymers, 2018, 197, 375-384.	10.2	28
71	Consecutive evaluation of graphene oxide and reduced graphene oxide nanoplatelets immunotoxicity on monocytes. Colloids and Surfaces B: Biointerfaces, 2017, 153, 300-309.	5.0	39
72	Pulse laser-induced generation of cluster codes from metal nanoparticles for immunoassay applications. APL Materials, 2017, 5, 053403.	5.1	4

#	Article	IF	CITATIONS
73	The effect of ligand–ligand interactions on the formation of photoluminescent gold nanoclusters embedded in Au(<scp>i</scp>)–thiolate supramolecules. Physical Chemistry Chemical Physics, 2017, 19, 12085-12093.	2.8	34
74	Carbon black aggregates cause endothelial dysfunction by activating ROCK. Journal of Hazardous Materials, 2017, 338, 66-75.	12.4	17
75	ROCK inhibitor Y-27632 attenuated early endothelial dysfunction caused by occupational environmental concentrations of carbon black nanoparticles. Environmental Science: Nano, 2017, 4, 1525-1533.	4.3	9
76	Metal-deposited bismuth oxyiodide nanonetworks with tunable enzyme-like activity: sensing of mercury and lead ions. Materials Chemistry Frontiers, 2017, 1, 893-899.	5.9	34
77	Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging. Acta Biomaterialia, 2017, 50, 522-533.	8.3	28
78	Reborn from the Ashes: Turning Organic Molecules to Antimicrobial Carbon Quantum Dots. ACS Infectious Diseases, 2017, 3, 777-779.	3.8	29
79	Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial. Scientific Reports, 2017, 7, 5446.	3.3	88
80	Poly(ε-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment. Nanoscale, 2017, 9, 11754-11764.	5.6	46
81	DNA Modulates the Interaction of Genetically Engineered DNA-Binding Proteins and Gold Nanoparticles: Diagnosis of High-Risk HPV Infection. ACS Applied Materials & Interfaces, 2017, 9, 44307-44315.	8.0	12
82	Pulse laser-induced fragmentation of carbon quantum dots: a structural analysis. Nanoscale, 2017, 9, 18359-18367.	5.6	8
83	Super-Cationic Carbon Quantum Dots Synthesized from Spermidine as an Eye Drop Formulation for Topical Treatment of Bacterial Keratitis. ACS Nano, 2017, 11, 6703-6716.	14.6	325
84	Improved Anticancer Photothermal Therapy Using the Bystander Effect Enhanced by Antiarrhythmic Peptide Conjugated Dopamineâ€Modified Reduced Graphene Oxide Nanocomposite. Advanced Healthcare Materials, 2017, 6, 1600804.	7.6	49
85	Satellite-like Gold Nanocomposites for Targeted Mass Spectrometry Imaging of Tumor Tissues. Nanotheranostics, 2017, 1, 141-153.	5.2	15
86	Photoassisted photoluminescence fine-tuning of gold nanodots through free radical-mediated ligand-assembly. Nanoscale, 2016, 8, 9771-9779.	5.6	11
87	Carbon Dot-Mediated Synthesis of Manganese Oxide Decorated Graphene Nanosheets for Supercapacitor Application. ACS Sustainable Chemistry and Engineering, 2016, 4, 3008-3016.	6.7	104
88	Functional gold nanoparticles coupled with laser desorption ionization mass spectrometry for bioanalysis. Analytical Methods, 2016, 8, 8123-8133.	2.7	36
89	Ultrastrong trapping of VEGF by graphene oxide: Anti-angiogenesis application. Biomaterials, 2016, 109, 12-22.	11.4	63
90	Synthesis of Selfâ€Assembled Spermidineâ€Carbon Quantum Dots Effective against Multidrugâ€Resistant Bacteria. Advanced Healthcare Materials, 2016, 5, 2545-2554.	7.6	151

#	Article	IF	CITATIONS
91	Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells. Sensors and Actuators B: Chemical, 2016, 228, 465-470.	7.8	105
92	Identification of Microalgae by Laser Desorption/Ionization Mass Spectrometry Coupled with Multiple Nanomatrices. Marine Biotechnology, 2016, 18, 283-292.	2.4	2
93	Ultrasound-mediated modulation of the emission of gold nanodots. Nanoscale, 2016, 8, 5162-5169.	5.6	18
94	Self-templated formation of aptamer-functionalized copper oxide nanorods with intrinsic peroxidase catalytic activity for protein and tumor cell detection. Sensors and Actuators B: Chemical, 2016, 227, 100-107.	7.8	25
95	Gold nanoparticles modified with self-assembled hybrid monolayer of triblock aptamers as a photoreversible anticoagulant. Journal of Controlled Release, 2016, 221, 9-17.	9.9	26
96	Immobilization of aptamer-modified gold nanoparticles on BiOCl nanosheets: Tunable peroxidase-like activity by protein recognition. Biosensors and Bioelectronics, 2016, 75, 181-187.	10.1	57
97	Selfâ€Assembly of Antimicrobial Peptides on Gold Nanodots: Against Multidrugâ€Resistant Bacteria and Woundâ€Healing Application. Advanced Functional Materials, 2015, 25, 7189-7199.	14.9	249
98	Prenatal air pollutant exposure and occurrence of atopic dermatitis. British Journal of Dermatology, 2015, 173, 981-988.	1.5	63
99	Phenylboronic acid-modified magnetic nanoparticles as a platform for carbon dot conjugation and doxorubicin delivery. Journal of Materials Chemistry B, 2015, 3, 5532-5543.	5.8	29
100	Analyses of functional polymer-modified nanoparticles for protein sensing by surface-assisted laser desorption/ionization mass spectrometry coupled with HgTe nanomatrices. Colloids and Surfaces B: Biointerfaces, 2015, 130, 157-163.	5.0	5
101	Alkali-treated konjac glucomannan film as a novel wound dressing. Carbohydrate Polymers, 2015, 117, 778-787.	10.2	57
102	Photothermal Therapeutic Response of Cancer Cells to Aptamer–Gold Nanoparticle-Hybridized Graphene Oxide under NIR Illumination. ACS Applied Materials & Interfaces, 2015, 7, 5097-5106.	8.0	199
103	Multivalent Aptamer/Gold Nanoparticle–Modified Graphene Oxide for Mass Spectrometry–Based Tumor Tissue Imaging. Scientific Reports, 2015, 5, 10292.	3.3	37
104	Monitoring Cluster Ions Derived from Aptamer-Modified Gold Nanofilms under Laser Desorption/Ionization for the Detection of Circulating Tumor Cells. ACS Applied Materials & Interfaces, 2015, 7, 8622-8630.	8.0	44
105	Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. Journal of Materials Chemistry B, 2015, 3, 651-664.	5.8	122
106	One-step synthesis of biofunctional carbon quantum dots for bacterial labeling. Biosensors and Bioelectronics, 2015, 68, 1-6.	10.1	141
107	Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells. Nanoscale, 2015, 7, 2504-2510.	5.6	100
108	Synthesis of photoluminescent carbon dots for the detection of cobalt ions. RSC Advances, 2015, 5, 2285-2291.	3.6	69

#	Article	IF	CITATIONS
109	Membrane-based detection of lead ions in seawater, urine and drinking straws through laser desorption/ionization. Sensors and Actuators B: Chemical, 2014, 203, 880-886.	7.8	6
110	Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. Journal of Materials Chemistry B, 2014, 2, 4564.	5.8	258
111	Photoluminescent gold nanodots: role of the accessing ligands. RSC Advances, 2014, 4, 33629.	3.6	24
112	High-performance organic nano-floating-gate memory devices based on graphite nanocrystals as charge-trapping elements and high-k Ta2O5 as a controlled gate dielectric. Journal of Materials Chemistry C, 2014, 2, 5342.	5.5	17
113	Functional gold nanoparticles coupled with microporous membranes: a flow controlled assay for colorimetric visualization of proteins. Analyst, The, 2014, 139, 5977-5982.	3.5	9
114	Detection of Arsenic(III) through Pulsed Laser-Induced Desorption/Ionization of Gold Nanoparticles on Cellulose Membranes. Analytical Chemistry, 2014, 86, 3167-3173.	6.5	32
115	Nitrite ion-induced fluorescence quenching of luminescent BSA-Au ₂₅ nanoclusters: mechanism and application. Analyst, The, 2014, 139, 2221-2228.	3.5	64
116	Immobilization of iron hydroxide/oxide on reduced graphene oxide: peroxidase-like activity and selective detection of sulfide ions. RSC Advances, 2014, 4, 37705.	3.6	30
117	Monitoring Thrombin Generation and Screening Anticoagulants through Pulse Laser-Induced Fragmentation of Biofunctional Nanogold on Cellulose Membranes. ACS Applied Materials & Interfaces, 2014, 6, 15253-15261.	8.0	15
118	Self-assembly of hybridized ligands on gold nanodots: tunable photoluminescence and sensing of nitrite. Nanoscale, 2014, 6, 11078-11083.	5.6	31
119	Membrane-Based Assay for Iodide Ions Based on Anti-Leaching of Gold Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 2576-2582.	8.0	31
120	Synthesis and Antimicrobial Activity of Gold/Silver–Tellurium Nanostructures. ACS Applied Materials & Interfaces, 2014, 6, 8305-8312.	8.0	32
121	Logic Control of Enzyme-Like Gold Nanoparticles for Selective Detection of Lead and Mercury Ions. Analytical Chemistry, 2014, 86, 2065-2072.	6.5	104
122	Detection of microRNA in Tumor Cells using Exonuclease III and Graphene Oxide-Regulated Signal Amplification. ACS Applied Materials & Interfaces, 2014, 6, 21780-21787.	8.0	47
123	Graphene oxide modified with aptamer-conjugated gold nanoparticles and heparin: a potent targeted anticoagulant. Biomaterials Science, 2014, 2, 1332-1337.	5.4	10
124	Synthesis of Fluorescent Gold Nanodot–Liposome Hybrids for Detection of Phospholipase C and Its Inhibitor. Analytical Chemistry, 2013, 85, 8834-8840.	6.5	55
125	Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods. Nanotechnology, 2013, 24, 444003.	2.6	6
126	Gold-Nanoparticles-Modified Cellulose Membrane Coupled with Laser Desorption/Ionization Mass Spectrometry for Detection of Iodide in Urine. ACS Applied Materials & amp; Interfaces, 2013, 5, 9161-9166.	8.0	42

#	Article	IF	CITATIONS
127	Synthesis of tellurium nanotubes via a green approach for detection and removal of mercury ions. RSC Advances, 2013, 3, 13983.	3.6	21
128	Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions. Nanoscale, 2013, 5, 8227.	5.6	97
129	Using photoluminescent gold nanodots to detect hemoglobin in diluted blood samples. Biosensors and Bioelectronics, 2013, 43, 38-44.	10.1	51
130	Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles. Nanoscale, 2013, 5, 2756.	5.6	47
131	Fibrinolysis and thrombosis of fibrinogen-modified gold nanoparticles for detection of fibrinolytic-related proteins. Analytica Chimica Acta, 2013, 774, 67-72.	5.4	7
132	Ligand effect on the luminescence of gold nanodots and its application for detection of total mercury ions in biological samples. RSC Advances, 2013, 3, 4588.	3.6	48
133	Information Derived from Cluster Ions from DNA-Modified Gold Nanoparticles under Laser Desorption/Ionization: Analysis of Coverage, Structure, and Single-Nucleotide Polymorphism. Analytical Chemistry, 2013, 85, 1021-1028.	6.5	26
134	Synthesis of Photoluminescent Au ND–PNIPAM Hybrid Microgel for the Detection of Hg ²⁺ . ACS Applied Materials & Interfaces, 2013, 5, 4383-4388.	8.0	60
135	Combining Fibrinogen-Conjugated Gold Nanoparticles with a Cellulose Membrane for the Mass Spectrometry-Based Detection of Fibrinolytic-Related Proteins. Analytical Chemistry, 2013, 85, 6922-6929.	6.5	14
136	Luminescent Gold Nanodots for Detection of Heavy Metal lons, Proteins and Bacteria. ACS Symposium Series, 2013, , 23-38.	0.5	4
137	Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale, 2012, 4, 6823.	5.6	100
138	Highly flexible and stable aptamer-caged nanoparticles for control of thrombin activity. RSC Advances, 2012, 2, 1577-1584.	3.6	16
139	Peroxidase-mimic bismuth–gold nanoparticles for determining the activity of thrombin and drug screening. Chemical Communications, 2012, 48, 7952.	4.1	114
140	Peroxidase mimicking DNA–gold nanoparticles for fluorescence detection of the lead ions in blood. Analyst, The, 2012, 137, 5222.	3.5	44
141	Catalytic gold nanoparticles for fluorescent detection of mercury(II) and lead(II) ions. Analytica Chimica Acta, 2012, 745, 124-130.	5.4	91
142	Visual detection of copper(ii) ions in blood samples by controlling the leaching of protein-capped gold nanoparticles. Analyst, The, 2012, 137, 1800.	3.5	29
143	Pulsed-Laser Desorption/Ionization of Clusters from Biofunctional Gold Nanoparticles: Implications for Protein Detections. ACS Applied Materials & amp; Interfaces, 2012, 4, 5241-5248.	8.0	25
144	Selective Detection of Iodide and Cyanide Anions Using Gold-Nanoparticle-Based Fluorescent Probes. ACS Applied Materials & Interfaces, 2012, 4, 2652-2658.	8.0	123

#	Article	IF	CITATIONS
145	Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. Journal of Materials Chemistry, 2012, 22, 12972.	6.7	174
146	Gold Nanoparticle–Aluminum Oxide Adsorbent for Efficient Removal of Mercury Species from Natural Waters. Environmental Science & Technology, 2012, 46, 2724-2730.	10.0	82
147	Molecularly Imprinted Aptamers of Gold Nanoparticles for the Enzymatic Inhibition and Detection of Thrombin. Langmuir, 2012, 28, 8944-8951.	3.5	45
148	Hot-injection synthesis of monodispersed Cu2ZnSn(SxSe1â^'x)4 nanocrystals: tunable composition and optical properties. Journal of Materials Chemistry, 2012, 22, 14667.	6.7	85
149	Detection and removal of mercury and lead ions by using gold nanoparticle-based gel membrane. Analytical Methods, 2012, 4, 1709.	2.7	39
150	A mass spectrometry-based immunosensor for bacteria using antibody-conjugated gold nanoparticles. Chemical Communications, 2012, 48, 8712.	4.1	30
151	Protein A-conjugated luminescent gold nanodots as a label-free assay for immunoglobulin G in plasma. Analyst, The, 2011, 136, 1177.	3.5	42
152	Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst, The, 2011, 136, 863-871.	3.5	353
153	Using Rhodamine 6G-Modified Gold Nanoparticles To Detect Organic Mercury Species in Highly Saline Solutions. Environmental Science & Technology, 2011, 45, 1534-1539.	10.0	59
154	Silica nanohybrids integrated with CuInS2/ZnS quantum dots and magnetite nanocrystals: multifunctional agents for dual-modality imaging and drug delivery. Journal of Materials Chemistry, 2011, 21, 19257.	6.7	58
155	Preparation of highly luminescent mannose–gold nanodots for detection and inhibition of growth of Escherichia coli. Biosensors and Bioelectronics, 2011, 27, 95-100.	10.1	29
156	Colorimetric detection of platelet-derived growth factors through competitive interactions between proteins and functional gold nanoparticles. Biosensors and Bioelectronics, 2011, 29, 204-209.	10.1	34
157	Selective Tellurium Nanowireâ€based Sensors for Mercury(II) in Aqueous Solution. Journal of the Chinese Chemical Society, 2011, 58, 732-738.	1.4	12
158	Colorimetric Assay of Lead Ions in Biological Samples Using a Nanogold-Based Membrane. ACS Applied Materials & Interfaces, 2011, 3, 2747-2754.	8.0	55
159	Gold nanoparticle-based colorimetric assays for coagulation-related proteins and their inhibition reactions. Biosensors and Bioelectronics, 2011, 26, 3160-3166.	10.1	32
160	Using self-assembled aptamers and fibrinogen-conjugated gold nanoparticles to detect DNA based on controlled thrombin activity. Biosensors and Bioelectronics, 2011, 26, 3464-3468.	10.1	16
161	Using a Functional Nanogold Membrane Coupled with Laser Desorption/Ionization Mass Spectrometry to Detect Lead Ions in Biofluids. Advanced Functional Materials, 2011, 21, 4448-4455.	14.9	40
162	Gold Nanoparticles Presenting Hybridized Selfâ€Assembled Aptamers That Exhibit Enhanced Inhibition of Thrombin. Angewandte Chemie - International Edition, 2011, 50, 7660-7665.	13.8	37

#	Article	IF	CITATIONS
163	Colorimetric Detection of DNA by Modulation of Thrombin Activity on Gold Nanoparticles. Chemistry - A European Journal, 2011, 17, 2374-2380.	3.3	27
164	Highly Efficient Control of Thrombin Activity by Multivalent Nanoparticles. Chemistry - A European Journal, 2011, 17, 10994-11000.	3.3	33
165	Label-free colorimetric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay. Biosensors and Bioelectronics, 2010, 25, 1922-1927.	10.1	108
166	Aptamer onjugated Nanoparticles Efficiently Control the Activity of Thrombin. Advanced Functional Materials, 2010, 20, 3175-3182.	14.9	51
167	Colorimetric Detection of Heavy Metal Ions Using Label-Free Gold Nanoparticles and Alkanethiols. Journal of Physical Chemistry C, 2010, 114, 16329-16334.	3.1	221
168	Enrichment and fluorescence enhancement of adenosine using aptamer–gold nanoparticles, PDGF aptamer, and Oligreen. Talanta, 2010, 81, 493-498.	5.5	45
169	A label-free colorimetric detection of lead ions by controlling the ligand shells of gold nanoparticles. Talanta, 2010, 82, 516-522.	5.5	68
170	Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chemical Communications, 2010, 46, 1257.	4.1	352
171	Photoassisted Synthesis of Luminescent Mannose–Au Nanodots for the Detection of Thyroglobulin in Serum. Chemistry - an Asian Journal, 2010, 5, 334-341.	3.3	44
172	Fluorescence detection of single-nucleotide polymorphisms using a thymidine-based molecular beacon. Biosensors and Bioelectronics, 2009, 24, 2541-2546.	10.1	49
173	Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chemical Communications, 2009, , 3437.	4.1	200
174	Synthesis of wavelength-tunable luminescent gold and gold/silver nanodots. Journal of Materials Chemistry, 2009, 19, 755-759.	6.7	106
175	Colorimetric Assay for Lead Ions Based on the Leaching of Gold Nanoparticles. Analytical Chemistry, 2009, 81, 9433-9439.	6.5	209
176	Synthesis of Fluorescent Carbohydrate-Protected Au Nanodots for Detection of Concanavalin A and <i>Escherichia coli</i> . Analytical Chemistry, 2009, 81, 875-882.	6.5	211
177	Highly Selective DNA-Based Sensor for Lead(II) and Mercury(II) Ions. Analytical Chemistry, 2009, 81, 2383-2387.	6.5	339
178	Aptamer-Functionalized Nano-Biosensors. Sensors, 2009, 9, 10356-10388.	3.8	124
179	Time-Resolved Luminescence-Based Assay for Thyroglobulin. Journal of Biomedical Nanotechnology, 2009, 5, 579-585.	1.1	7
180	Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosensors and Bioelectronics, 2008, 23, 1749-1753.	10.1	156

#	Article	IF	CITATIONS
181	Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine. Chemical Communications, 2008, , 1461.	4.1	117
182	Detection of mercury(ii) based on Hg2+–DNA complexes inducing the aggregation of gold nanoparticles. Chemical Communications, 2008, , 2242.	4.1	373
183	Bioconjugated Gold Nanodots and Nanoparticles for Protein Assays Based on Photoluminescence Quenching. Analytical Chemistry, 2008, 80, 1497-1504.	6.5	196
184	Control over Surface DNA Density on Gold Nanoparticles Allows Selective and Sensitive Detection of Mercury(II). Langmuir, 2008, 24, 8346-8350.	3.5	146
185	Oligonucleotide-Based Fluorescence Probe for Sensitive and Selective Detection of Mercury(II) in Aqueous Solution. Analytical Chemistry, 2008, 80, 3716-3721.	6.5	307
186	Fluorescence detection of single nucleotide polymorphisms using a universal molecular beacon. Nucleic Acids Research, 2008, 36, e123-e123.	14.5	60
187	Parameters for selective colorimetric sensing of mercury(ii) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chemical Communications, 2007, , 1215-1217.	4.1	318
188	Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II). Angewandte Chemie - International Edition, 2007, 46, 6824-6828.	13.8	690
189	Aptamer-Functionalized Gold Nanoparticles for Turn-On Light Switch Detection of Platelet-Derived Growth Factor. Analytical Chemistry, 2007, 79, 4798-4804.	6.5	159
190	Nuclease Resistance of Telomere-like Oligonucleotides Monitored in Live Cells by Fluorescence Anisotropy Imaging. Analytical Chemistry, 2006, 78, 1478-1484.	6.5	50
191	Selective Gold-Nanoparticle-Based "Turn-On―Fluorescent Sensors for Detection of Mercury(II) in Aqueous Solution. Analytical Chemistry, 2006, 78, 8332-8338.	6.5	449
192	A modification of the Jones–Harris method for deep-groove ball bearings. Tribology International, 2006, 39, 1413-1420.	5.9	34
193	Capillary electrophoresis-based separation techniques for the analysis of proteins. Electrophoresis, 2006, 27, 3503-3522.	2.4	72
194	Aptamer-Modified Gold Nanoparticles for Colorimetric Determination of Platelet-Derived Growth Factors and Their Receptors. Analytical Chemistry, 2005, 77, 5735-5741.	6.5	530
195	Separation of Long Double-Stranded DNA by Nanoparticle-Filled Capillary Electrophoresis. Analytical Chemistry, 2004, 76, 192-196.	6.5	114
196	Synthesis of Dumbbell-Shaped Auâ^'Ag Coreâ^'Shell Nanorods by Seed-Mediated Growth under Alkaline Conditions. Langmuir, 2004, 20, 6089-6092.	3.5	173
197	Proteinâ^'Protein Interaction Studies Based on Molecular Aptamers by Affinity Capillary Electrophoresis. Analytical Chemistry, 2004, 76, 6973-6981.	6.5	97
198	Plasmon Absorption of Gold Nanoparticles in Linear Polymer Solutions. Journal of Nanoscience and Nanotechnology, 2004, 4, 622-627.	0.9	4

#	Article	IF	CITATIONS
199	Capillary electrophoretic separation of dsDNA under nonuniform electric fields. Analytical and Bioanalytical Chemistry, 2003, 376, 379-383.	3.7	8
200	A simple, rapid, and sensitive method for analysis of SYPRO Red labeled sodium dodecyl sulfate-protein complexes by capillary electrophoresis with laser-induced fluorescence. Electrophoresis, 2003, 24, 1730-1736.	2.4	24
201	Improved separation of double-stranded DNA fragments by capillary electrophoresis using poly(ethylene oxide) solution containing colloids. Electrophoresis, 2003, 24, 2896-2902.	2.4	55
202	Exploring the Activity and Specificity of Gold Nanoparticle-Bound Trypsin by Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Langmuir, 2003, 19, 7498-7502.	3.5	33
203	Indirect fluorescence of aliphatic carboxylic acids in nonaqueous capillary electrophoresis using merocyanine 540. Electrophoresis, 2002, 23, 449.	2.4	14
204	Effects of metal ions on concentration of DNA in high-conductivity media by capillary electrophoresis. Journal of Chromatography A, 2002, 966, 195-203.	3.7	9
205	Domain Specific Monoclonal Anti-factor VIII Antibodies Generated by Inclusion Body-renatured Factor VIII Peptides. Thrombosis Research, 2001, 101, 405-415.	1.7	3
206	Epitope mapping of factor VIII inhibitor antibodies of Chinese origin. British Journal of Haematology, 2001, 113, 915-924.	2.5	10
207	Maximization of injection volumes for DNA analysis in capillary electrophoresis. Electrophoresis, 2001, 22, 4328-4332.	2.4	16
208	Analysis of large-volume DNA markers and polymerase chain reaction products by capillary electrophoresis in the presence of electroosmotic flow. Journal of Chromatography A, 2001, 927, 179-190.	3.7	27