Narayanan Venkataramani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2568021/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of oxygen partial pressure on resistive switching characteristics of PLD deposited ZnFe2O4 thin films for RRAM devices. Ceramics International, 2022, 48, 7876-7884.	4.8	11
2	Bipolar resistive switching with improved memory window in W/ZnFe2O4/Pt devices. Materials Science in Semiconductor Processing, 2022, 142, 106497.	4.0	2
3	Microstructural and mechanical behavior of Na0.4K0.1Bi0.5TiO3 ferroelectric ceramics. Ceramics International, 2022, 48, 26546-26552.	4.8	6
4	Magnetoelectric response in lead-free Na0.4K0.1Bi0.5TiO3/NiFe2O4 laminated composites. Materials Today Communications, 2021, 26, 101898.	1.9	6
5	Emergence of reentrant relaxor behavior with enhanced electromechanical and electrocaloric effect in Ba0.95Ca0.05Sn0.09Ti0.91O3 ceramic. Applied Physics Letters, 2020, 117, 212901.	3.3	11
6	(Na0.8K0.2)0.5Bi0.5TiO3 thin film: A Pb-free MPB composition with large piezoelectricity. AIP Conference Proceedings, 2020, , .	0.4	1
7	Lead-free Na0.4K0.1Bi0.5TiO3 ceramic: Poling effect and enhancement in electromechanical and piezoelectric voltage coefficient. Journal of the European Ceramic Society, 2020, 40, 5384-5391.	5.7	12
8	Observation of enhanced magnetic anisotropy in PLD YIG thin film on GGG (1â€ [–] 1â€ [–] 1) substrate. Journal of Magnetism and Magnetic Materials, 2019, 483, 191-195.	2.3	9
9	Low-loss YIG thick films for microwave applications. Ceramics International, 2019, 45, 4316-4321.	4.8	12
10	Enhanced Ferroelectric and Converse Piezoelectric Properties of Dense Lead-Free Na _{0.4} K _{0.1} Bi _{0.5} TiO _{3Ceramics for Actuator Applications. Advances in Materials Physics and Chemistry, 2019, 09, 1-10.}	gt;0.7	4
11	Effect of substrate temperature on magnetic properties of MnFe2O4thin films. AIP Advances, 2018, 8, 056112.	1.3	23
12	Enhanced magnetoelectric response in 2-2 bilayer 0.50Pb(Ni _{1/3} Nb _{2/3})O ₃ –0.35PbTiO ₃ –0.15PbZrO _{ films. Journal Physics D: Applied Physics, 2018, 51, 114004.}	3< 58 b>/	NiFexsub>2
13	Temperature and field dependent magnetization studies on nano-crystalline ZnFe2O4 thin films. AIP Advances, 2018, 8, .	1.3	23
14	Room temperature magnetoelectric and magnetodielectric properties of 2–2 bilayer 0.50Pb (Ni1/3Nb2/3) O3–0.35PbTiO3–0.15PbZrO3/CoFe2O4 thin film. Scripta Materialia, 2018, 150, 125-129.	5.2	21
15	Magnetic properties of pulsed laser deposited Co1â^'xZnxFe2O4 (0.10 ≤ ≤0.70) thin films. Journal of Magnetism and Magnetic Materials, 2018, 448, 192-198.	2.3	6
16	Effect of Annealing on the Structural and FMR Properties of Epitaxial Yig Thin Films Grown by RF Magnetron Sputtering. , 2018, , .		0
17	Effect of Annealing on the Structural and FMR Properties of Epitaxial YIG Thin Films Grown by RF Magnetron Sputtering. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	10
18	Ethanol and Hydrogen Gas-Sensing Properties of CuO–CuFe ₂ O ₄ Nanostructured Thin Films. IEEE Sensors Journal, 2018, 18, 6937-6945.	4.7	18

#	Article	IF	CITATIONS
19	PMN-PT thin films on La _{0.67} Ca _{0.33} MnO ₃ seeded platinized glass substrate: phase formation, dielectric and ferroelectric studies. Materials Research Express, 2018, 5, 096408.	1.6	2
20	Effect of substrate temperature on growth and electrical properties of pulsed laser deposition grown 0.5Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.15PbZrO3 thin films. Thin Solid Films, 2018, 661, 16-22.	1.8	3
21	Large Room Temperature Magnetic Moment in Mn\${_{1-x}}\$ Zn\${x}\$ Fe ₂ O ₄ Thin Films for \${x geq0.4 }\$. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	2
22	Effect of thickness on magnetic and microwave properties of RF-sputtered Zn-ferrite thin films. AIP Advances, 2017, 7, .	1.3	10
23	Anomalously large magnetic moment in nanocrystalline Co _{0.3} Zn _{0.7} Fe ₂ O ₄ thin films. Journal of Physics Communications, 2017, 1, 035010.	1.2	3
24	Evaluation of Exchange Stiffness From Temperature-Dependent Magnetization in ZnFe ₂ O ₄ Thin Films. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	2
25	Temperature dependence of FMR and magnetization in nanocrystalline zinc ferrite thin films. AIP Advances, 2016, 6, 055928.	1.3	12
26	Effect of Oxygen Pressure on the Magnetic Properties of Yttrium-Iron-Garnet Thin Films Made by Pulsed Laser Deposition. IEEE Magnetics Letters, 2016, 7, 1-4.	1.1	7
27	Room-temperature magneto-dielectric response in multiferroic ZnFe ₂ O ₄ /PMN-PT bilayer thin films. Smart Materials and Structures, 2016, 25, 085032.	3.5	12
28	Effect of quenching on the magnetic properties of Mg-ferrite thin films. AIP Advances, 2016, 6, .	1.3	5
29	Structural, magnetic and gas sensing properties of nanosized copper ferrite powder synthesized by sol gel combustion technique. Journal of Magnetism and Magnetic Materials, 2016, 418, 48-53.	2.3	24
30	Effect of Morphological Change on Unipolar and Bipolar Switching Characteristics in Pr0.7Ca0.3MnO3 Based RRAM. Materials Research Society Symposia Proceedings, 2015, 1729, 47-52.	0.1	11
31	A Study of FMR Linewidth and Magnetic Order in Nanocrystalline ZnFe ₂ O ₄ Thin Films. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	14
32	Preparation of Low Microwave Loss YIG Thin Films by Pulsed Laser Deposition. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	23
33	A study of nanosized magnesium ferrite particles with high magnetic moment. Journal of Magnetism and Magnetic Materials, 2015, 382, 225-232.	2.3	21
34	Nanocrystalline zinc ferrite films studied by magneto-optical spectroscopy. Journal of Applied Physics, 2015, 117, 178726.	2.5	7
35	Microwave properties of RF- sputtered ZnFe2O4 thin films. , 2014, , .		2
36	Magnetic and FMR Study on CoFe\$_{2}\$O\$_{4}\$/ZnFe\$_{2}\$O\$_{4}\$ Bilayers. IEEE Transactions on Magnetics, 2013, 49, 4200-4203.	2.1	1

#	Article	IF	CITATIONS
37	FMR and Magnetic Studies on Polycrystalline YIG Thin Films Deposited Using Pulsed Laser. IEEE Transactions on Magnetics, 2013, 49, 990-994.	2.1	26
38	Low Temperature Magnetization Studies of Nanocrystalline Zn-Ferrite Thin Films. IEEE Transactions on Magnetics, 2013, 49, 4249-4252.	2.1	20
39	Influence of PbTiO[sub 3] addition on microstructure of (1-x)Pb(Mg[sub 1â^•3]Nb[sub 2â^•3])O[sub 3]-xPbTiO[sub 3] ceramics. , 2013, , .		1
40	Complete Permittivity Tensor in Sputtered CuFe2O4 Thin Films at Photon Energies between 2 and 5 eV. Materials, 2013, 6, 4096-4108.	2.9	7
41	Thermal Budget Reduction for Back-end Compatibility and Control of Resistance Switching Mechanism (Unipolar to Bipolar) in Pr1-xCaxMnO3 (PCMO) RRAM. Materials Research Society Symposia Proceedings, 2013, 1507, 1.	0.1	1
42	Conducting Oxide Electrode to Mitigate Mechanical Instability (Bubble Formation) during Operation of La1-xSrxMnO3 (LSMO) based RRAM. Materials Research Society Symposia Proceedings, 2013, 1507, 1.	0.1	1
43	Hysteresis and remanence in magnetoelectric effects in functionally graded magnetostrictive-piezoelectric layered composites. Physical Review B, 2012, 85, .	3.2	64
44	Magnetic Properties of Nanocrystalline CoFe2O4/ZnFe2O4 Bilayers. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2653-2657.	1.8	10
45	Thickness dependent anomalous magnetic behavior in pulsed-laser deposited cobalt ferrite thin film. Applied Physics A: Materials Science and Processing, 2012, 106, 931-935.	2.3	20
46	Substrate Temperature Dependent Anomalous Magnetic Behavior in \$hbox{CoFe}_{2}hbox{O}_{4}\$ Thin Film. IEEE Transactions on Magnetics, 2011, 47, 337-340.	2.1	18
47	Narrow Ferromagnetic Resonance Linewidth Polycrystalline Zn-Ferrite Thin Films. IEEE Transactions on Magnetics, 2011, 47, 345-348.	2.1	19
48	Stability of nonthermodynamic equilibrium cation distribution frozen during pulsed laser deposition of Co-ferrite thin films. Applied Physics A: Materials Science and Processing, 2010, 98, 889-894.	2.3	17
49	Sassolite Formation in Glass Powders: A Novel Method to Study Phase Separation in Alkali Borosilicate Glass Compositions. Journal of the American Ceramic Society, 2010, 93, 3027-3030.	3.8	3
50	Pulse Laser Deposited Nanocrystalline Cobalt Ferrite Thin Films. Journal of Nanoscience and Nanotechnology, 2010, 10, 3112-3117.	0.9	18
51	Influence of Nature of Filler on Densification of Anorthiteâ€Based Crystallizable Glass+Ceramic System for Low Temperature Cofired Ceramics Application. Journal of the American Ceramic Society, 2009, 92, 595-600.	3.8	37
52	Correlation of grain boundary nature with magnetization in RF-sputtered lithium–zinc ferrite thin films. Journal of Magnetism and Magnetic Materials, 2009, 321, 3373-3379.	2.3	5
53	The influence of substrate temperature and annealing on the properties of pulsed laser-deposited YIG films on fused quartz substrate. Journal of Magnetism and Magnetic Materials, 2008, 320, 2233-2236.	2.3	44
54	Synthesis and Characterization of Crystallizable Anorthiteâ€Based Glass for a Lowâ€Temperature Cofired Ceramic Application. Journal of the American Ceramic Society, 2008, 91, 652-655.	3.8	37

NARAYANAN VENKATARAMANI

#	Article	IF	CITATIONS
55	Faraday effect in cubic and tetragonal copper ferrite CuFe2O4 films—Comparative studies. Journal of Magnetism and Magnetic Materials, 2007, 316, e688-e691.	2.3	11
56	Large room temperature magnetization in nanocrystalline zinc ferrite thin films. Applied Physics Letters, 2006, 88, 262506.	3.3	98
57	MOKE spectroscopy of sputter-deposited Cu-ferrite films. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 195-197.	2.3	5
58	Moke spectroscopy of sputter deposited Cu-ferrite films. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E885-E886.	2.3	5
59	Anomalous variation of coercivity with annealing in nanocrystalline NiZn ferrite films. Journal of Applied Physics, 2002, 91, 7592.	2.5	59
60	Annealing induced structural change in sputter deposited copper ferrite thin films and its impact on magnetic properties. Journal of Applied Physics, 2002, 91, 2220-2227.	2.5	55
61	Enhanced magnetization in sputter-deposited copper ferrite thin films. Journal of Magnetism and Magnetic Materials, 2002, 246, 266-269.	2.3	38
62	A TEM study on lithium zinc ferrite thin films and the microstructure correlation with the magnetic properties. Journal of Magnetism and Magnetic Materials, 2001, 231, 108-112.	2.3	25
63	Study of magnetization and crystallization in sputter deposited LiZn ferrite thin films. Journal of Applied Physics, 1999, 86, 3303-3311.	2.5	85
64	Sputter deposited LiZn ferrite films on fused quartz substrates. Journal of Magnetism and Magnetic Materials, 1996, 152, L1-L4.	2.3	8
65	Sputter deposited strontium ferrite films withcâ€axis oriented normal to the film plane. Applied Physics Letters, 1994, 64, 1579-1581.	3.3	20