
Tom J H Ruigrok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/256764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerebellar modules operate at different frequencies. ELife, 2014, 3, e02536.	6.0	254
2	Topography of cerebellar nuclear projections to the brain stem in the rat. Progress in Brain Research, 2000, 124, 141-172.	1.4	236
3	Organization of the Vestibulocerebellum. Annals of the New York Academy of Sciences, 1996, 781, 553-579.	3.8	210
4	The Distribution of Climbing and Mossy Fiber Collateral Branches from the Copula Pyramidis and the Paramedian Lobule: Congruence of Climbing Fiber Cortical Zones and the Pattern of Zebrin Banding within the Rat Cerebellum. Journal of Neuroscience, 2003, 23, 4645-4656.	3.6	199
5	The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: The congruence of projection zones and the zebrin pattern. Journal of Neurocytology, 2004, 33, 5-21.	1.5	192
6	Ins and Outs of Cerebellar Modules. Cerebellum, 2011, 10, 464-474.	2.5	151
7	Cerebellar Modules and Their Role as Operational Cerebellar Processing Units. Cerebellum, 2018, 17, 654-682.	2.5	151
8	Organization of projections from the inferior olive to the cerebellar nuclei in the rat. Journal of Comparative Neurology, 2000, 426, 209-228.	1.6	148
9	Excitatory Cerebellar Nucleocortical Circuit Provides Internal Amplification during Associative Conditioning. Neuron, 2016, 89, 645-657.	8.1	141
10	Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8410-8415.	7.1	134
11	Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: A light microscopic and ultrastructural triple-tracer study in the rat. , 1998, 392, 164-178.		131
12	Organization of Cerebral Projections to Identified Cerebellar Zones in the Posterior Cerebellum of the Rat. Journal of Neuroscience, 2012, 32, 10854-10869.	3.6	122
13	Precise Spatial Relationships between Mossy Fibers and Climbing Fibers in Rat Cerebellar Cortical Zones. Journal of Neuroscience, 2006, 26, 12067-12080.	3.6	119
14	Chapter 2 Transverse and longitudinal patterns in the mammalian cerebellum. Progress in Brain Research, 1997, 114, 21-37.	1.4	112
15	Encoding of whisker input by cerebellar Purkinje cells. Journal of Physiology, 2010, 588, 3757-3783.	2.9	100
16	Spontaneous Activity Signatures of Morphologically Identified Interneurons in the Vestibulocerebellum. Journal of Neuroscience, 2011, 31, 712-724.	3.6	100
17	Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum. Journal of Comparative Neurology, 2003, 466, 278-298.	1.6	84
18	Topography of olivo-cortico-nuclear modules in the intermediate cerebellum of the rat. Journal of Comparative Neurology, 2005, 492, 193-213.	1.6	82

Tom J H Ruigrok

#	Article	IF	CITATIONS
19	An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway. ELife, 2019, 8, .	6.0	82
20	Axonal Sprouting and Formation of Terminals in the Adult Cerebellum during Associative Motor Learning. Journal of Neuroscience, 2013, 33, 17897-17907.	3.6	76
21	Multiple cerebellar zones are involved in the control of individual muscles: a retrograde transneuronal tracing study with rabies virus in the rat. European Journal of Neuroscience, 2008, 28, 181-200.	2.6	71
22	Between in and out: linking morphology and physiology of cerebellar cortical interneurons. Progress in Brain Research, 2005, 148, 329-340.	1.4	70
23	Cerebellar projections to the red nucleus and inferior olive originate from separate populations of neurons in the rat: a non-fluorescent double labeling study. Brain Research, 1995, 673, 313-319.	2.2	58
24	Properties of the Nucleo-Olivary Pathway: An In Vivo Whole-Cell Patch Clamp Study. PLoS ONE, 2012, 7, e46360.	2.5	52
25	Spatiotemporal Dynamics of Re-Innervation and Hyperinnervation Patterns by Uninjured CGRP Fibers in the Rat Foot Sole Epidermis after Nerve Injury. Molecular Pain, 2012, 8, 1744-8069-8-61.	2.1	50
26	A retrograde double-labeling technique for light microscopy A combination of axonal transport of cholera toxin B-subunit and a gold-lectin conjugate. Journal of Neuroscience Methods, 1995, 61, 127-138.	2.5	38
27	Selective Impairment of the Cerebellar C1 Module Involved in Rat Hind Limb Control Reduces Step-Dependent Modulation of Cutaneous Reflexes. Journal of Neuroscience, 2008, 28, 2179-2189.	3.6	36
28	Re-innervation patterns by peptidergic Substance-P, non-peptidergic P2X3, and myelinated NF-200 nerve fibers in epidermis and dermis of rats with neuropathic pain. Experimental Neurology, 2013, 241, 13-24.	4.1	36
29	Collateralization of cerebellar output to functionally distinct brainstem areas. A retrograde, non-fluorescent tracing study in the rat. Frontiers in Systems Neuroscience, 2014, 8, 23.	2.5	33
30	Organization of pontocerebellar projections to identified climbing fiber zones in the rat. Journal of Comparative Neurology, 2006, 496, 513-528.	1.6	32
31	Multizonal Cerebellar Influence Over Sensorimotor Areas of the Rat Cerebral Cortex. Cerebral Cortex, 2019, 29, 598-614.	2.9	30
32	Cerebellar Nuclei and the Inferior Olivary Nuclei: Organization and Connections. , 2013, , 377-436.		24
33	Anatomical investigation of potential contacts between climbing fibers and cerebellar Golgi cells in the mouse. Frontiers in Neural Circuits, 2013, 7, 59.	2.8	21
34	Innervation mapping of the hind paw of the rat using Evans Blue extravasation, Optical Surface Mapping and CASAM. Journal of Neuroscience Methods, 2014, 229, 15-27.	2.5	21
35	Input and output organization of the mesodiencephalic junction for cerebroâ€cerebellar communication. Journal of Neuroscience Research, 2022, 100, 620-637.	2.9	20
36	Olivary projecting neurons in the nucleus prepositus hypoglossi, group y and ventral dentate nucleus do not project to the oculomotor complex in the rabbit and the rat. Neuroscience Letters, 1995, 190, 45-48.	2.1	17

Том J H Ruigrok

#	Article	IF	CITATIONS
37	Inferior olivary-induced expression of Fos-like immunoreactivity in the cerebellar nuclei of wild-type and Lurcher mice. European Journal of Neuroscience, 1999, 11, 3809-3822.	2.6	17
38	Disynaptic Subthalamic Input to the Posterior Cerebellum in Rat. Frontiers in Neuroanatomy, 2017, 11, 13.	1.7	17
39	A light microscope-based double retrograde tracer strategy to chart central neuronal connections. Nature Protocols, 2007, 2, 1869-1878.	12.0	16
40	Identifying Purkinje cells using only their spontaneous simple spike activity. Journal of Neuroscience Methods, 2014, 232, 173-180.	2.5	16
41	Lack of a bilateral projection of individual spinal neurons to the lateral reticular nucleus in the rat: a retrograde, non-fluorescent, double labeling study. Neuroscience Letters, 1995, 200, 13-16.	2.1	15
42	Electron microscopy of in vivo recorded and intracellularly injected inferior olivary neurons and their GABAergic innervation in the cat. Microscopy Research and Technique, 1993, 24, 85-102.	2.2	14
43	A fluorescence-based double retrograde tracer strategy for charting central neuronal connections. Nature Protocols, 2007, 2, 1862-1868.	12.0	14
44	The basal interstitial nucleus (BIN) of the cerebellum provides diffuse ascending inhibitory input to the floccular granule cell layer. Journal of Comparative Neurology, 2018, 526, 2231-2256.	1.6	14
45	Caveats in Transneuronal Tracing with Unmodified Rabies Virus: An Evaluation of Aberrant Results Using a Nearly Perfect Tracing Technique. Frontiers in Neural Circuits, 2016, 10, 46.	2.8	13
46	Visuo-Vestibular Information Processing by Unipolar Brush Cells in the Rabbit Flocculus. Cerebellum, 2015, 14, 578-583.	2.5	12
47	Thermo-sensitive TRP channels in peripheral nerve injury: A review of their role in cold intolerance. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2014, 67, 591-599.	1.0	10
48	Mirror-image pain after nerve reconstruction in rats is related to enhanced density of epidermal peptidergic nerve fibers. Experimental Neurology, 2015, 267, 87-94.	4.1	8
49	Cerebellar Influences on Descending Spinal Motor Systems. , 2013, , 497-528.		5
50	Spinocerebellar and Cerebellospinal Pathways. , 2016, , 79-88.		1
51	Cerebellar Nuclei and the Inferior Olivary Nuclei: Organization and Connections. , 2022, , 497-557.		1
52	Cerebellar Modules and Networks Involved in Locomotion Control. , 2016, , 279-284.		0
53	Cerebellar Influences on Descending Spinal Motor Systems. , 2020, , 1-36.		0
54	Cerebellar Nuclei and the Inferior Olivary Nuclei: Organization and Connections. , 2020, , 1-61.		0

#	Article	IF	CITATIONS
55	Cerebellar Influences on Descending Spinal Motor Systems. , 2022, , 625-660.		Ο