Danyelle Medeiros de AraÃojo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2566844/publications.pdf

Version: 2024-02-01

		1040056	1125743	
13	588	9	13	
papers	citations	h-index	g-index	
13	13	13	637	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. Journal of Electroanalytical Chemistry, 2012, 674, 103-107.	3.8	116
2	Electrochemical conversion/combustion of a model organic pollutant on BDD anode: Role of sp 3 /sp 2 ratio. Electrochemistry Communications, 2014, 47, 37-40.	4.7	96
3	Understanding active chlorine species production using boron doped diamond films with lower and higher sp3/sp2 ratio. Electrochemistry Communications, 2015, 55, 34-38.	4.7	93
4	Electrochemical technology for the treatment of real washing machine effluent at pre-pilot plant scale by using active and non-active anodes. Journal of Electroanalytical Chemistry, 2018, 818, 216-222.	3.8	75
5	Influence of mediated processes on the removal of Rhodamine with conductive-diamond electrochemical oxidation. Applied Catalysis B: Environmental, 2015, 166-167, 454-459.	20.2	69
6	Decontamination of produced water containing petroleum hydrocarbons by electrochemical methods: a minireview. Environmental Science and Pollution Research, 2014, 21, 8432-8441.	5.3	53
7	Activation by light irradiation of oxidants electrochemically generated during Rhodamine B elimination. Journal of Electroanalytical Chemistry, 2015, 757, 144-149.	3.8	26
8	Improving the catalytic effect of peroxodisulfate and peroxodiphosphate electrochemically generated at diamond electrode by activation with light irradiation. Chemosphere, 2018, 207, 774-780.	8.2	21
9	Electrochemical Degradation of Methyl Red Using Ti/Ru0.3Ti0.7O2: Fragmentation of Azo Group. Electrocatalysis, 2013, 4, 312-319.	3.0	16
10	Application of electrochemical oxidation process to the degradation of the Novacron Blue dye using single and dual flow cells. Journal of Solid State Electrochemistry, 2016, 20, 2589-2597.	2.5	9
11	Application of Combined Electrochemical Approaches for Removing/ Determining Cr(VI). Current Analytical Chemistry, 2017, 13, 202-209.	1.2	6
12	Achieving Electrochemical-Sustainable-Based Solutions for Monitoring and Treating Hydroxychloroquine in Real Water Matrix. Applied Sciences (Switzerland), 2022, 12, 699.	2.5	5
13	Ultrasound and UV technologies for wastewater treatment using boron-doped diamond anodes. Current Opinion in Electrochemistry, 2022, 33, 100935.	4.8	3