Chengjian Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2566381/publications.pdf

Version: 2024-02-01

135	7,697	50	80
papers	citations	h-index	g-index
137	137	137	6121 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Decarboxylative Acylation of Carboxylic Acids: Reaction Investigation and Mechanistic Study. CCS Chemistry, 2022, 4, 2469-2480.	4.6	18
2	Highly selective synthesis of all-carbon tetrasubstituted alkenes by deoxygenative alkenylation of carboxylic acids. Nature Communications, 2022, 13, 10.	5.8	58
3	Decarboxylative tandem C-N coupling with nitroarenes via SH2 mechanism. Nature Communications, 2022, 13, 2432.	5 . 8	32
4	Photoinduced manganese-catalysed hydrofluorocarbofunctionalization of alkenes., 2022, 1, 475-486.		36
5	Nickel-catalyzed Thioester Transfer Reaction with sp ² -Hybridized Electrophiles. Journal of Organic Chemistry, 2022, 87, 10003-10017.	1.7	6
6	Manganese-catalysed divergent silylation of alkenes. Nature Chemistry, 2021, 13, 182-190.	6.6	98
7	Direct Deoxygenative Intramolecular Acylation of Biarylcarboxylic Acids. Synlett, 2021, 32, 387-390.	1.0	5
8	A highly selective decarboxylative deuteration of carboxylic acids. Chemical Science, 2021, 12, 5505-5510.	3.7	36
9	Photoredox/nickel-catalyzed hydroacylation of ethylene with aromatic acids. Chemical Communications, 2021, 57, 9064-9067.	2.2	15
10	Dinuclear gold-catalyzed C-H bond functionalization of cyclopropenes. Science China Chemistry, 2021, 64, 1958-1963.	4.2	18
11	Site-specific Umpolung amidation of carboxylic acids via triplet synergistic catalysis. Nature Communications, 2021, 12, 4637.	5.8	56
12	Thiocarbamoyl Fluoride Synthesis by Deconstructive Diversification of Arylated Tetrahydroisoquinolines. Journal of Organic Chemistry, 2021, 86, 12443-12451.	1.7	10
13	Photoredox radical borylation of electron-deficient alkenes with NHC-boranes. Chemical Communications, 2020, 56, 15647-15650.	2.2	12
14	Upgrading ketone synthesis direct from carboxylic acids and organohalides. Nature Communications, 2020, 11, 3312.	5.8	65
15	A review of enantioselective dual transition metal/photoredox catalysis. Science China Chemistry, 2020, 63, 637-647.	4.2	120
16	Photoredoxâ€Controlled βâ€Regioselective Radical Hydroboration of Activated Alkenes with NHCâ€Boranes. Angewandte Chemie - International Edition, 2020, 59, 12817-12821.	7.2	46
17	Deoxygenative Arylation of Carboxylic Acids by Aryl Migration. Chemistry - A European Journal, 2019, 25, 12724-12729.	1.7	47
18	Late-stage trifluoromethylthiolation of benzylic C-H bonds. Nature Communications, 2019, 10, 4867.	5.8	61

#	Article	IF	Citations
19	Gold-Catalyzed Oxidative Biaryl Cross-Coupling of Organometallics. CheM, 2019, 5, 2718-2730.	5.8	56
20	Cooperative Au/Ag Dual-Catalyzed Cross-Dehydrogenative Biaryl Coupling: Reaction Development and Mechanistic Insight. Journal of the American Chemical Society, 2019, 141, 3187-3197.	6.6	101
21	Deoxygenative Deuteration of Carboxylic Acids with D ₂ 0. Angewandte Chemie - International Edition, 2019, 58, 312-316.	7.2	172
22	Deoxygenative Deuteration of Carboxylic Acids with D ₂ O. Angewandte Chemie, 2019, 131, 318-322.	1.6	38
23	Synergistic Photoredox Catalysis and Organocatalysis for Inverse Hydroboration of Imines. Angewandte Chemie, 2018, 130, 4054-4058.	1.6	42
24	Synergistic Photoredox Catalysis and Organocatalysis for Inverse Hydroboration of Imines. Angewandte Chemie - International Edition, 2018, 57, 3990-3994.	7.2	121
25	Distal radical migration strategy: an emerging synthetic means. Chemical Society Reviews, 2018, 47, 654-667.	18.7	266
26	Relay photocatalytic cascade reactions: synthesis of indolo[2,1- <i>a</i>]isoquinoline derivatives <i>via</i> double C(sp ³)–H bond functionalization. Chemical Communications, 2018, 54, 1655-1658.	2.2	16
27	Exploration of C–H Transformations of Aldehyde Hydrazones: Radical Strategies and Beyond. Accounts of Chemical Research, 2018, 51, 484-495.	7.6	106
28	Amplification effect of circularly polarized luminescence induced from binaphthyl-based zinc(<scp>ii</scp>) chiral coordination polymers. Materials Chemistry Frontiers, 2018, 2, 554-558.	3.2	33
29	Photoredox 1,2-dicarbofunctionalization of unactivated alkenes <i>via</i> tandem radical difluoroalkylation and alkynyl migration. Organic Chemistry Frontiers, 2018, 5, 797-800.	2.3	46
30	Photoredox and cobalt co-catalyzed C(sp ²)â€"H functionalization/Câ€"O bond formation for synthesis of lactones under oxidant- and acceptor-free conditions. Organic Chemistry Frontiers, 2018, 5, 749-752.	2.3	44
31	A general deoxygenation approach for synthesis of ketones from aromatic carboxylic acids and alkenes. Nature Communications, 2018, 9, 3517.	5.8	199
32	Synergistic Catalysis for the Umpolung Trifluoromethylthiolation of Tertiary Ethers. Angewandte Chemie - International Edition, 2018, 57, 10357-10361.	7.2	91
33	Synergistic Catalysis for the Umpolung Trifluoromethylthiolation of Tertiary Ethers. Angewandte Chemie, 2018, 130, 10514-10518.	1.6	19
34	Selective Hydroarylation of 1,3â€Diynes Using a Dimeric Manganese Catalyst: Modular Synthesis of <i>Z</i> à€Enynes. Angewandte Chemie - International Edition, 2018, 57, 12906-12910.	7.2	63
35	Synthesis of cyclohexylidenehydrazine-fused polycyclics via a photocatalytic radical cascade reaction of 2-ethynylaldehyde hydrazones. Chemical Communications, 2017, 53, 2036-2039.	2.2	26
36	Copper-Catalyzed Cascade Phosphorylation Initiated Radical Cyclization: Access to 2-Phosphorylated Pyrrolo[1,2- <i>a</i>) indole. Journal of Organic Chemistry, 2017, 82, 2199-2204.	1.7	55

#	Article	IF	CITATIONS
37	Reversal aggregation-induced circular dichroism from axial chirality transfer via self-assembled helical nanowires. RSC Advances, 2017, 7, 15851-15856.	1.7	33
38	Electron Catalytic Photochemical Cascade Carbodifluoroalkylation/Radical Cyclization of Methyleneâ€2â€oxazolines. Advanced Synthesis and Catalysis, 2017, 359, 1672-1677.	2.1	36
39	Circularly polarized luminescence of chiral 1,8-naphthalimide-based pyrene fluorophore induced via supramolecular self-assembly. Journal of Materials Chemistry C, 2017, 5, 6030-6036.	2.7	30
40	Photoredox-Catalyzed Hydroacylation of Olefins Employing Carboxylic Acids and Hydrosilanes. Organic Letters, 2017, 19, 3430-3433.	2.4	55
41	Strong circularly polarized luminescence induced from chiral supramolecular assembly of helical nanorods. Chemical Communications, 2017, 53, 7505-7508.	2.2	65
42	Iron-catalyzed cascade cyanoalkylation/radical dearomatization of N-phenylcinnamamides: access to cyanoalkylated 1-azaspiro[4.5]decanes. Organic Chemistry Frontiers, 2017, 4, 1272-1275.	2.3	33
43	The direct decarboxylative allylation of N-arylglycine derivatives by photoredox catalysis. Organic Chemistry Frontiers, 2017, 4, 525-528.	2.3	33
44	[3+2] Cycloaddition of azide with aldehyde hydrazone through an aminyl radical-polar crossover strategy. Chemical Communications, 2017, 53, 1045-1047.	2.2	27
45	Relay Visible-Light Photoredox Catalysis: Synthesis of Pyrazole Derivatives via Formal [4 + 1] Annulation and Aromatization. Organic Letters, 2017, 19, 214-217.	2.4	55
46	Photoredox-Catalyzed Deoxygenative Intramolecular Acylation of Biarylcarboxylic Acids: Access to Fluorenones. Journal of Organic Chemistry, 2017, 82, 12834-12839.	1.7	34
47	Copperâ€Catalyzed Radical Silylarylation of Ynones with Silanes: En Route to Silylâ€Functionalized Indenones. Advanced Synthesis and Catalysis, 2017, 359, 4153-4157.	2.1	31
48	Photoredox organocatalytic α-amino C(sp ³)â€"H functionalization for the synthesis of 5-membered heterocyclic γ-amino acid derivatives. Organic Chemistry Frontiers, 2017, 4, 2433-2436.	2.3	14
49	Harnessing sunlight without a photosensitizer for highly efficient consecutive [3+2]/[4+2] annulation to synthesize fused benzobicyclic skeletons. Chemical Communications, 2017, 53, 10707-10710.	2.2	20
50	Domino-Fluorination–Protodefluorination Enables Decarboxylative Cross-Coupling of α-Oxocarboxylic Acids with Styrene via Photoredox Catalysis. Journal of Organic Chemistry, 2017, 82, 9305-9311.	1.7	55
51	Selective reduction of carboxylic acids to aldehydes with hydrosilane via photoredox catalysis. Chemical Communications, 2017, 53, 10228-10231.	2.2	35
52	Photoredox Divergent 1,2-Difunctionalization of Alkenes with <i>gem</i> -Dibromides. Organic Letters, 2017, 19, 6452-6455.	2.4	39
53	Rh(<scp>iii</scp>)-catalyzed double C–H activation of aldehyde hydrazones: a route for functionalized 1H-indazole synthesis. Chemical Science, 2017, 8, 1303-1308.	3.7	45
54	Visibleâ€Light Photoredoxâ€Catalyzed Câ^'H Difluoroalkylation of Hydrazones through an Aminyl Radical/Polar Mechanism. Angewandte Chemie - International Edition, 2016, 55, 2939-2943.	7.2	176

#	Article	IF	CITATIONS
55	A photoredox catalyzed radical–radical coupling reaction: facile access to multi-substituted nitrogen heterocycles. Chemical Communications, 2016, 52, 7596-7599.	2.2	56
56	A Single Electron Transfer (SET) Approach to C–H Amidation of Hydrazones via Visible-Light Photoredox Catalysis. Organic Letters, 2016, 18, 5356-5359.	2.4	37
57	Regulating Circularly Polarized Luminescence Signals of Chiral Binaphthyl-Based Conjugated Polymers by Tuning Dihedral Angles of Binaphthyl Moieties. Macromolecules, 2016, 49, 5444-5451.	2.2	86
58	The functionalization of a cascade of C(sp ²)â€"H/C(sp ³)â€"H bonds: synthesis of fused dihydropyrazoles via visible-light photoredox catalysis. Chemical Communications, 2016, 52, 11901-11904.	2.2	34
59	Metal-Free Radical Oxidative Cyclization of <i>o</i> -Azidoaryl Acetylenic Ketones with Sulfinic Acids To Access Sulfone-Containing 4-Quinolones. Journal of Organic Chemistry, 2016, 81, 12181-12188.	1.7	42
60	Visible-light-induced three-component 1,2-difluoroalkylarylation of styrenes with α-carbonyl difluoroalkyl bromides and indoles. Organic Chemistry Frontiers, 2016, 3, 1443-1446.	2.3	46
61	Cascade photoredox/gold catalysis: access to multisubstituted indoles via aminoarylation of alkynes. Chemical Communications, 2016, 52, 14400-14403.	2.2	46
62	Homolytic Cleavage of a Bâ^B Bond by the Cooperative Catalysis of Two Lewis Bases: Computational Design and Experimental Verification. Angewandte Chemie - International Edition, 2016, 55, 5985-5989.	7.2	143
63	Strong and Reversible Circularly Polarized Luminescence Emission of a Chiral 1,8â€Naphthalimide Fluorophore Induced by Excimer Emission and Orderly Aggregation. Chemistry - A European Journal, 2016, 22, 9519-9522.	1.7	66
64	Cascade Photoredox/Iodide Catalysis: Access to Difluoro- \hat{l}^3 -lactams via Aminodifluoroalkylation of Alkenes. Organic Letters, 2016, 18, 3266-3269.	2.4	92
65	Sustainable C(sp3)-H Bond Functionalization. Springer Briefs in Molecular Science, 2016, , .	0.1	15
66	Silver-Catalyzed Cascade Radical Cyclization: A Direct Approach to 3,4-Disubstituted Dihydroquinolin- $2(1 < i > H < i >)$ -ones through Activation of the Pâ \in "H Bond and Functionalization of the C(sp ²)â \in "H Bond. Journal of Organic Chemistry, 2016, 81, 2122-2127.	1.7	52
67	Oxidative C(sp ²)–H Phosphonation of Aldehyde Hydrazones. Organic Letters, 2016, 18, 1143-1145.	2.4	65
68	Metal-free tandem oxidative C(sp ³)â€"H bond functionalization of alkanes and dearomatization of N-phenyl-cinnamamides: access to alkylated 1-azaspiro[4.5]decanes. Chemical Communications, 2016, 52, 477-480.	2.2	43
69	Reversal Circularly Polarized Luminescence of AlEâ€Active Chiral Binaphthyl Molecules from Solution to Aggregation. Chemistry - A European Journal, 2015, 21, 13196-13200.	1.7	78
70	Visibleâ€Lightâ€Induced Radical Tandem Aryldifluoroacetylation of Cinnamamides: Access to Difluoroacetylated Quinoloneâ€2â€ones And 1â€Azaspiro[4.5]decanes. Advanced Synthesis and Catalysis, 2015, 357, 3057-3063.	2.1	89
71	Central-to-Axial Chirality Transfer-Induced CD Sensor for Chiral Recognition and <i>ee</i> Value Detection of 1,2-DACH Enantiomers. Macromolecular Chemistry and Physics, 2015, 216, 1925-1929.	1.1	5
72	A study on tunable AIE (AIEE) of boron ketoiminate-based conjugated polymers for live cell imaging. Polymer Chemistry, 2015, 6, 5070-5076.	1.9	29

#	Article	IF	CITATIONS
73	CPL emission of chiral BINOL-based polymers via chiral transfer of the conjugated chain backbone structure. RSC Advances, 2015, 5, 105851-105854.	1.7	17
74	CO-enabled rhenium hydride catalyst for directed C(sp ²)â€"H bond alkylation with olefins. Organic Chemistry Frontiers, 2015, 2, 378-382.	2.3	37
75	Aggregation-induced circularly polarized luminescence of an (R)-binaphthyl-based AIE-active chiral conjugated polymer with self-assembled helical nanofibers. Polymer Chemistry, 2015, 6, 2416-2422.	1.9	91
76	Rhodiumâ€Catalyzed Direct C7 Alkynylation of Indolines. Advanced Synthesis and Catalysis, 2015, 357, 1149-1153.	2.1	45
77	A novel visible light mediated radical cyclization of enol lactones: a concise method for fluorinated polycyclic lactone scaffolds. Chemical Communications, 2015, 51, 13508-13510.	2.2	66
78	Circularly polarized luminescence of AIE-active chiral O-BODIPYs induced via intramolecular energy transfer. Chemical Communications, 2015, 51, 9014-9017.	2.2	124
79	Microwave-assisted preparation of N-doped carbon dots as a biosensor for electrochemical dopamine detection. Journal of Colloid and Interface Science, 2015, 452, 199-202.	5.0	82
80	Monofluoromethylation of Tetrahydroisoquinolines by Visibleâ€light Induced Direct C(sp ³)H Bond Activation. Advanced Synthesis and Catalysis, 2015, 357, 1277-1282.	2.1	33
81	Visible light promoted carbodifluoroalkylation of allylic alcohols via concomitant 1,2-aryl migration. Chemical Communications, 2015, 51, 7222-7225.	2.2	146
82	N-doped carbon dots synthesized by rapid microwave irradiation as highly fluorescent probes for Pb ²⁺ detection. New Journal of Chemistry, 2015, 39, 3357-3360.	1.4	77
83	Red colored CPL emission of chiral 1,2-DACH-based polymers via chiral transfer of the conjugated chain backbone structure. Polymer Chemistry, 2015, 6, 6802-6805.	1.9	39
84	Fe-promoted radical cyanomethylation/arylation of arylacrylamides to access oxindoles via cleavage of the sp ³ Câ€"H of acetonitrile and the sp ² Câ€"H of the phenyl group. Organic and Biomolecular Chemistry, 2015, 13, 361-364.	1.5	71
85	Enantioselective sulfenylation of \hat{l} ±-nitroesters catalyzed by diarylprolinols. Tetrahedron Letters, 2014, 55, 387-389.	0.7	16
86	Fluorescence Study of Chiral βâ€Ketoiminateâ€Based Newly Synthesized Boron Hybrid Polymers. Macromolecular Chemistry and Physics, 2014, 215, 358-364.	1.1	50
87	When C–H bond functionalization meets visible-light photoredox catalysis. Tetrahedron Letters, 2014, 55, 36-48.	0.7	209
88	Room temperature decarboxylative trifluoromethylation of \hat{l}_{\pm} , \hat{l}_{-}^{2} -unsaturated carboxylic acids by photoredox catalysis. Chemical Communications, 2014, 50, 2308-2310.	2.2	123
89	(S)-BINOL-based boronic ester fluorescence sensors for enantioselective recognition of \hat{l}_{\pm} -phenylethylamine and phenylglycinol. RSC Advances, 2014, 4, 5887.	1.7	24
90	Synthesis and tunable chiroptical properties of chiral BODIPY-based D–π–A conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 1076-1084.	2.7	54

#	Article	IF	Citations
91	Chiral sensing of Eu(III)â€containing achiral polymer complex from chiral amino acids coordination induction. Journal of Polymer Science Part A, 2014, 52, 3080-3086.	2.5	13
92	â€~Click'-BINOL based chiral ionic polymers for highly enantioselective recognition of tryptophan anions. Polymer Chemistry, 2014, 5, 5218.	1.9	6
93	Gold-catalyzed C(sp ³)–H bond functionalization. Chemical Society Reviews, 2014, 43, 5245-5256.	18.7	237
94	A novel lowâ€bandgap conjugated polymer based on Ru(II) bis(acetylide) complex and BODIPY moieties. Journal of Polymer Science Part A, 2014, 52, 1686-1692.	2.5	10
95	A tetraphenylethene-based chiral polymer: an AIE luminogen with high and tunable CPL dissymmetry factor. Journal of Materials Chemistry C, 2013, 1, 4713.	2.7	76
96	A helical chiral polymer-based chromo-fluorescence and CD response sensor for selective detection of trivalent cations. Journal of Polymer Science Part A, 2013, 51, 4070-4075.	2.5	21
97	Near-infrared emission of novel bent-core V-shaped conjugated polymers based on the B,O-chelated azadipyrromethene structure. Polymer Chemistry, 2013, 4, 4396.	1.9	27
98	Rhenium-Catalyzed Acceptorless Dehydrogenative Coupling via Dual Activation of Alcohols and Carbonyl Compounds. ACS Catalysis, 2013, 3, 2195-2198.	5.5	37
99	Chiral sensing for induced circularly polarized luminescence using an Eu(iii)-containing polymer and d- or l-proline. Chemical Communications, 2013, 49, 5772.	2.2	134
100	Visibleâ€Lightâ€Induced Trifluoromethylation of <i>N</i> â€Aryl Acrylamides: A Convenient and Effective Method To Synthesize CF ₃ â€Containing Oxindoles Bearing a Quaternary Carbon Center. Chemistry - A European Journal, 2013, 19, 14039-14042.	1.7	236
101	Organocatalytic Asymmetric Allylic Alkylation of Morita–Baylis–Hillman Carbonates with Phosphorus Ylides: Synthesis of Chiral 3â€Substituted 2,4â€Functionalized 1,4â€Pentadienes. European Journal of Organic Chemistry, 2013, 2013, 6241-6245.	1.2	21
102	<i>In Situ</i> Formed Bifunctional Primary Amineâ€Imine Catalyst: Application to the Construction of Chiral Tertiary Alcohols through Asymmetric Aldolâ€Type Reaction. Advanced Synthesis and Catalysis, 2013, 355, 2029-2036.	2.1	16
103	A visible-light-promoted aerobic C–H/C–N cleavage cascade to isoxazolidine skeletons. Chemical Science, 2013, 4, 1281.	3.7	104
104	Aza-BODIPY-based D–π–A conjugated polymers with tunable band gap: synthesis and near-infrared emission. Polymer Chemistry, 2013, 4, 520-527.	1.9	51
105	A coumarin-based chiral fluorescence sensor for the highly enantioselective recognition of phenylalaninol. New Journal of Chemistry, 2013, 37, 317-322.	1.4	24
106	A room temperature decarboxylation/Câ \in "H functionalization cascade by visible-light photoredox catalysis. Chemical Communications, 2013, 49, 5672.	2.2	236
107	Rheniumâ€Catalyzed Oxidative Cyanation of Tertiary Amines with TMSCN. European Journal of Organic Chemistry, 2013, 2013, 7286-7290.	1.2	39
108	Tetraethylammonium Bromide atalyzed Oxidative Thioesterification of Aldehydes and Alcohols. Advanced Synthesis and Catalysis, 2013, 355, 3558-3562.	2.1	68

#	Article	IF	CITATIONS
109	Synthesis and Characterization of 2-Alkylbenzotriazole-Based Donor-Ï€-Acceptor-Type Copolymers. Synlett, 2013, 24, 1505-1508.	1.0	2
110	Goldâ€Catalyzed Direct Indolation of Tetrahydroisoquinolines. Chinese Journal of Chemistry, 2012, 30, 2741-2746.	2.6	9
111	Synthesis and Fluorescence Properties of Chiral Nearâ€Infrared Emissive Polymers Incorporating BODIPY Derivatives and (<i>S</i>)â€Binaphthyl. Macromolecular Chemistry and Physics, 2012, 213, 2238-2245.	1.1	30
112	Tuning chromaticity based on energy transfer from the conjugated polymer to the Eu(TTA)3 moiety. Polymer Chemistry, 2012, 3, 2578.	1.9	14
113	A highly regioselective sp3 C–H amination of tertiary amides based on Fe(ii) complex catalysts. RSC Advances, 2012, 2, 6733.	1.7	26
114	In Situ Generated 1:1 Zn(II)-Containing Polymer Complex Sensor for Highly Enantioselective Recognition of N-Boc-Protected Alanine. Macromolecules, 2012, 45, 7835-7842.	2.2	40
115	A highly selective and sensitive polymer-based OFF-ON fluorescent sensor for Hg ²⁺ detection incorporating salen and perylenyl moieties. Journal of Materials Chemistry, 2012, 22, 478-482.	6.7	126
116	The Au(iii)-catalyzed coupling reactions between alcohols and N-heterocycles via C–H bond activation. RSC Advances, 2012, 2, 10496.	1.7	23
117	Polymerâ€based colorimetric and "turn off―fluorescence sensor incorporating benzo[2,1,3]thiadiazole moiety for Hg ²⁺ Detection. Journal of Polymer Science Part A, 2012, 50, 517-522.	2.5	29
118	A Scalable, Efficient Goldâ€Catalyzed Oxidative Phosphonation of ⟨i⟩sp⟨/i⟩⟨sup⟩3⟨/sup⟩ CH Bonds using Air as Sustainable Oxidant. Advanced Synthesis and Catalysis, 2012, 354, 1646-1650.	2.1	88
119	Selective Saccharide Recognition Using Modular Diboronic Acid Fluorescent Sensors. European Journal of Organic Chemistry, 2012, 2012, 1223-1229.	1.2	28
120	Isoquinoline-catalyzed addition of 2-bromo-1-aryl-1-ethanone to dialkyl azodicarboxylate: synthesis of trialkyl 2-[(1E)-N-(alkoxycarbonyl)-2-aryl-2-oxoethanehydrazonoyl]hydrazine-1,1,2-tricarboxylate. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2012, 143, 255-262.	0.9	3
121	Organocatalytic Enantioselective Sulfenylation of βâ€Keto Phosphonates: A Convenient Approach to Construct Hetero―Quaternary Stereocenters. Advanced Synthesis and Catalysis, 2011, 353, 545-549.	2.1	44
122	Organocatalytic Asymmetric CS Bond Formation: Synthesis of αâ€Methyleneâ€Î²â€mercapto Esters with Simple Alkyl Thiols. Advanced Synthesis and Catalysis, 2011, 353, 3301-3306.	2.1	28
123	Synthesis of Novel 1,4â€Bissulfonamide Ligands for Enantioselective Addition of Diethylzinc to Aldehydes. Chinese Journal of Chemistry, 2011, 29, 1697-1702.	2.6	2
124	Imidazolium Ionâ€Tagged Proline Organocatalyst for αâ€Aminoxylation of Aldehydes and Ketones in Ionic Liquids. Advanced Synthesis and Catalysis, 2010, 352, 108-112.	2.1	27
125	Polymerâ€based fluorescence sensors incorporating chiral binaphthyl and benzo[2,1,3]thiadiazole moieties for Hg ²⁺ detection. Journal of Polymer Science Part A, 2010, 48, 997-1006.	2.5	49
126	Catalytic Asymmetric Ringâ€Opening Reaction of <i>meso</i> â€Epoxides with Aryl Selenols and Thiols Catalyzed by a Heterobimetallic Galliumâ€Titaniumâ€Salen Complex. Advanced Synthesis and Catalysis, 2009, 351, 920-930.	2.1	49

#	Article	lF	CITATION
127	An Efficient Molybdenum(VI)â€Catalyzed Direct Substitution of Allylic Alcohols with Nitrogen, Oxygen, and Carbon Nucleophiles. European Journal of Organic Chemistry, 2009, 2009, 666-672.	1.2	80
128	Syntheses, structures and properties of a series of organic–inorganic complexes based on methylenediisophthalic acid (H ₄ MDIP). CrystEngComm, 2008, 10, 207-216.	1.3	43
129	Three coordination polymers with helical chains based on methylenediisophthalic acid (H4MDIP). CrystEngComm, 2008, 10, 706.	1.3	56
130	Syntheses and solid state structures of hybrid d10 metal–organic frameworks based on methylenediisophthalic acid (H4MDIP). CrystEngComm, 2007, 9, 758.	1.3	44
131	Utilization of organogallium and organoindium compounds as alkylation reagents in organic synthesis: the addition of trialkylgallium and trialkylindium to aldehydes catalyzed by Lewis acids. Applied Organometallic Chemistry, 2005, 19, 898-902.	1.7	7
132	The first example of enantioselective isocyanosilylation of meso epoxides with TMSCN catalyzed by novel chiral organogallium and indium complexesElectronic supplementary information (ESI) available: Characterization data, chiral analysis and determination of absolute configuration. See http://www.rsc.org/suppdata/cc/b2/b212511k/. Chemical Communications, 2003, , 692-693.	2.2	43
133	The first example of enantioselective isocyanosilylation of meso epoxides with TMSCN catalyzed by novel chiral organogallium and indium complexes. Chemical Communications, 2003, , 692-3.	2.2	1
134	Carbon-Halogen bond cleavage reaction catalyzed by organoyttrium hydride (in situ) and lanthanide alkoxides. Applied Organometallic Chemistry, 1995, 9, 457-460.	1.7	7
135	<scp>Manganeseâ€Catalyzed Antiâ€Markovnikov</scp> Hydroarylation of Enamides: Modular Synthesis of Arylethylamines. Chinese Journal of Chemistry, 0, , .	2.6	13