Wanida Ono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2566093/publications.pdf

Version: 2024-02-01

567281 454955 1,766 31 15 30 citations h-index g-index papers 35 35 35 2046 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synergy of single-cell sequencing analyses and in vivo lineage-tracing approaches: A new opportunity for stem cell biology. Biocell, 2022, 46, 1157-1162.	0.7	3
2	Toward Marrow Adipocytes: Adipogenic Trajectory of the Bone Marrow Stromal Cell Lineage. Frontiers in Endocrinology, 2022, 13, 882297.	3.5	4
3	Cranial Base Synchondrosis: Chondrocytes at the Hub. International Journal of Molecular Sciences, 2022, 23, 7817.	4.1	9
4	Cranial Base Synchondrosis Lacks PTHrP-Expressing Column-Forming Chondrocytes. International Journal of Molecular Sciences, 2022, 23, 7873.	4.1	4
5	Bone regeneration via skeletal cell lineage plasticity: All hands mobilized for emergencies. BioEssays, 2021, 43, e2000202.	2.5	13
6	Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell and Tissue Research, 2021, 383, 603-616.	2.9	12
7	Flow Cytometry-Based Analysis of the Mouse Bone Marrow Stromal and Perivascular Compartment. Methods in Molecular Biology, 2021, 2308, 83-94.	0.9	9
8	Chondrocytes in the resting zone of the growth plate are maintained in a Wnt-inhibitory environment. ELife, 2021, 10 , .	6.0	31
9	Single-Cell Transcriptomic Analysis Reveals Developmental Relationships and Specific Markers of Mouse Periodontium Cellular Subsets. Frontiers in Dental Medicine, 2021, 2, .	1.4	16
10	The hypertrophic chondrocyte: To be or not to be. Histology and Histopathology, 2021, , 18355.	0.7	13
11	The Role of Wnt Signaling in Postnatal Tooth Root Development. Frontiers in Dental Medicine, 2021, 2,	1.4	11
12	Mesenchymal Progenitor Regulation of Tooth Eruption: A View from PTHrP. Journal of Dental Research, 2020, 99, 133-142.	5 . 2	32
13	A threeâ€dimensional analysis of primary failure of eruption in humans and mice. Oral Diseases, 2020, 26, 391-400.	3.0	14
14	Skeletal Stem Cells for Bone Development and Repair: Diversity Matters. Current Osteoporosis Reports, 2020, 18, 189-198.	3.6	45
15	A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nature Communications, 2020, 11, 332.	12.8	184
16	Growth plate skeletal stem cells and their transition from cartilage to bone. Bone, 2020, 136, 115359.	2.9	41
17	Intercellular Interactions of an Adipogenic CXCL12-Expressing Stromal Cell Subset in Murine Bone Marrow. Journal of Bone and Mineral Research, 2020, 36, 1145-1158.	2.8	14
18	Growth Plate Borderline Chondrocytes Behave as Transient Mesenchymal Precursor Cells. Journal of Bone and Mineral Research, 2019, 34, 1387-1392.	2.8	44

#	Article	IF	Citations
19	Growth Plate Chondrocytes: Skeletal Development, Growth and Beyond. International Journal of Molecular Sciences, 2019, 20, 6009.	4.1	92
20	Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 575-580.	7.1	91
21	Salt-inducible kinases dictate parathyroid hormone 1 receptor action in bone development and remodeling. Journal of Clinical Investigation, 2019, 129, 5187-5203.	8.2	28
22	Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature, 2018, 563, 254-258.	27.8	280
23	Msx2 Marks Spatially Restricted Populations of Mesenchymal Precursors. Journal of Dental Research, 2018, 97, 1260-1267.	5.2	3
24	The fate of Osterixâ€expressing mesenchymal cells in dental root formation and maintenance. Orthodontics and Craniofacial Research, 2017, 20, 39-43.	2.8	10
25	Diverse contribution of <i>Col2a1</i> â€expressing cells to the craniofacial skeletal cell lineages. Orthodontics and Craniofacial Research, 2017, 20, 44-49.	2.8	15
26	Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation. Nature Communications, 2016, 7, 11277.	12.8	105
27	A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nature Cell Biology, 2014, 16, 1157-1167.	10.3	346
28	Vasculature-Associated Cells Expressing Nestin in Developing Bones Encompass Early Cells in the Osteoblast and Endothelial Lineage. Developmental Cell, 2014, 29, 330-339.	7.0	160
29	A Novel Population of Cells Expressing Both Hematopoietic and Mesenchymal Markers Is Present in the Normal Adult Bone Marrow and Is Augmented in a Murine Model of Marrow Fibrosis. American Journal of Pathology, 2012, 180, 811-818.	3.8	20
30	Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system. Biochemical and Biophysical Research Communications, 2007, 357, 917-923.	2.1	115
31	Fundamental Properties of Native Bone Marrow Perisinusoidal Mesenchymal Stem Cells. SSRN Electronic Journal, 0, , .	0.4	O