
Andrew G Maclean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2565055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imaging of surface microdomains on individual extracellular vesicles in 3â€Ð. Journal of Extracellular Vesicles, 2022, 11, e12191.	12.2	23
2	Klotho Expression in Aging and Disease. FASEB Journal, 2022, 36, .	0.5	0
3	Transcriptional signatures of Zika virus infection in astrocytes. Journal of NeuroVirology, 2021, 27, 116-125.	2.1	3
4	Extracellular Vesicles as a Means of Viral Immune Evasion, CNS Invasion, and Glia-Induced Neurodegeneration. Frontiers in Cellular Neuroscience, 2021, 15, 695899.	3.7	10
5	Astrocyte and microglial aging. , 2021, , 269-279.		Ο
6	CRISPR based editing of SIV proviral DNA in ART treated non-human primates. Nature Communications, 2020, 11, 6065.	12.8	66
7	Culture Model for Non-human Primate Choroid Plexus. Frontiers in Cellular Neuroscience, 2019, 13, 396.	3.7	9
8	Lack of susceptibility in neonatally infected rhesus macaques to simian immunodeficiency virus-induced encephalitis. Journal of NeuroVirology, 2019, 25, 578-588.	2.1	3
9	Adverse event following live attenuated chikungunya vaccine in a cynomolgus macaque with preâ€existing chronic hydrocephalus. Journal of Medical Primatology, 2019, 48, 257-259.	0.6	1
10	A Method to Investigate Astrocyte and Microglial Morphological Changes in the Aging Brain of the Rhesus Macaque. Methods in Molecular Biology, 2019, 1938, 265-276.	0.9	3
11	Current and Future Therapeutic Strategies for Lentiviral Eradication from Macrophage Reservoirs. Journal of NeuroImmune Pharmacology, 2019, 14, 68-93.	4.1	4
12	Chronic Viral Neuroinflammation: Speculation on Underlying Mechanisms. Viral Immunology, 2019, 32, 55-62.	1.3	7
13	Nef Secretion into Extracellular Vesicles or Exosomes Is Conserved across Human and Simian Immunodeficiency Viruses. MBio, 2018, 9, .	4.1	84
14	miR-130a and miR-212 Disrupt the Intestinal Epithelial Barrier through Modulation of PPARγ and Occludin Expression in Chronic Simian Immunodeficiency Virus–Infected Rhesus Macaques. Journal of Immunology, 2018, 200, 2677-2689.	0.8	39
15	Selfâ€injurious behaviours in rhesus macaques: Potential glial mechanisms. Journal of Intellectual Disability Research, 2018, 62, 1008-1017.	2.0	8
16	Glial cell morphological and density changes through the lifespan of rhesus macaques. Brain, Behavior, and Immunity, 2016, 55, 60-69.	4.1	74
17	The flavivirus dengue induces hypertrophy of white matter astrocytes. Journal of NeuroVirology, 2016, 22, 831-839.	2.1	11
18	Contributions of Nonhuman Primates to Research on Aging. Veterinary Pathology, 2016, 53, 277-290.	1.7	62

ANDREW G MACLEAN

#	Article	IF	CITATIONS
19	Neuropathogenesis of Chikungunya infection: astrogliosis and innate immune activation. Journal of NeuroVirology, 2016, 22, 140-148.	2.1	36
20	Naltrexone treatment reverses astrocyte atrophy and immune dysfunction in self-harming macaques. Brain, Behavior, and Immunity, 2015, 50, 288-297.	4.1	20
21	New advances on glial activation in health and disease. World Journal of Virology, 2015, 4, 42.	2.9	53
22	A novel realâ€ŧime CTL assay to measure designer Tâ€cell function against <scp>HIV</scp> Env ⁺ cells. Journal of Medical Primatology, 2014, 43, 341-348.	0.6	22
23	Form follows function: astrocyte morphology and immune dysfunction in SIV neuroAIDS. Journal of NeuroVirology, 2014, 20, 474-484.	2.1	18
24	Innate Immune Activation in the Pathogenesis of a Murine Model of Globoid Cell Leukodystrophy. American Journal of Pathology, 2014, 184, 382-396.	3.8	46
25	Cytokines and Chemokines at the Crossroads of Neuroinflammation, Neurodegeneration, and Neuropathic Pain. Mediators of Inflammation, 2013, 2013, 1-20.	3.0	458
26	Mediators of Neuroinflammation. Mediators of Inflammation, 2013, 2013, 1-2.	3.0	8
27	Transient acidification and subsequent proinflammatory cytokine stimulation of astrocytes induce distinct activation phenotypes. Journal of Cellular Physiology, 2013, 228, 1284-1294.	4.1	28
28	Astrocyte Atrophy and Immune Dysfunction in Self-Harming Macaques. PLoS ONE, 2013, 8, e69980.	2.5	17
29	Aerosol-induced brucellosis increases TLR-2 expression and increased complexity in the microanatomy of astroglia in rhesus macaques. Frontiers in Cellular and Infection Microbiology, 2013, 3, 86.	3.9	32
30	The Stress-Response Factor SigH Modulates the Interaction between Mycobacterium tuberculosis and Host Phagocytes. PLoS ONE, 2012, 7, e28958.	2.5	57
31	Microglia activation by SIV-infected macrophages: alterations in morphology and cytokine secretion. Journal of NeuroVirology, 2012, 18, 213-221.	2.1	15
32	S100β as a novel and accessible indicator for the presence of monocyteâ€driven encephalitis in AIDS. Neuropathology and Applied Neurobiology, 2012, 38, 162-174.	3.2	10
33	An inverted blood–brain barrier model that permits interactions between glia and inflammatory stimuli. Journal of Neuroscience Methods, 2012, 207, 91-96.	2.5	15
34	MCP-3/CCL7 production by astrocytes: implications for SIV neuroinvasion and AIDS encephalitis. Journal of NeuroVirology, 2011, 17, 146-152.	2.1	27
35	Acquired immunodeficiency syndrome and the blood-brain barrier. Journal of NeuroVirology, 2009, 15, 111-122.	2.1	99
36	Association of FAK activation with lentivirus-induced disruption of blood-brain barrier tight junction–associated ZO-1 protein organization. Journal of NeuroVirology, 2009, 15, 312-323.	2.1	26

ANDREW G MACLEAN

#	Article	IF	CITATIONS
37	Simian immunodeficiency virus disrupts extended lengths of the blood-brain barrier. Journal of Medical Primatology, 2005, 34, 237-242.	0.6	23
38	SIV-induced activation of the blood-brain barrier requires cell-associated virus and is not restricted to endothelial cell activation. Journal of Medical Primatology, 2004, 33, 236-242.	0.6	11
39	Activation of the blood–brain barrier by SIV (simian immunodeficiency virus) requires cell-associated virus and is not restricted to endothelial cell activation. Biochemical Society Transactions, 2004, 32, 750-752.	3.4	14
40	Enhanced Expression of Proinflammatory Cytokines in the Central Nervous System Is Associated with Neuroinvasion by Simian Immunodeficiency Virus and the Development of Encephalitis. Journal of Virology, 2002, 76, 5797-5802.	3.4	53
41	Characterization of an in vitro rhesus macaque blood–brain barrier. Journal of Neuroimmunology, 2002, 131, 98-103.	2.3	17
42	Rhesus macaque brain microvessel endothelial cells behave in a manner phenotypically distinct from umbilical vein endothelial cells. Journal of Neuroimmunology, 2001, 118, 223-232.	2.3	20
43	Macaques with Rapid Disease Progression and Simian Immunodeficiency Virus Encephalitis Have a Unique Cytokine Profile in Peripheral Lymphoid Tissues. Journal of Virology, 2001, 75, 4448-4452.	3.4	54
44	Thymosin \hat{I}^2 4 sulfoxide is an anti-inflammatory agent generated by monocytes in the presence of glucocorticoids. Nature Medicine, 1999, 5, 1424-1427.	30.7	183
45	A novel approach to practical enzymology teaching: a conductimetric investigation of arginase, inorganic pyrophosphatase, aliphatic esterase, ornithine carbamyl transferase and argininosuccinate lyase activities from mammalian liver. Biochemical Education, 1998, 26, 56-62.	0.1	1
46	Conductimetry for enzyme teaching. Biochemical Society Transactions, 1998, 26, S197-S197.	3.4	0
47	Relationship of Human Neutrophil Morphology and Actin Distribution to Dispersive Locomotion caused by a steroid induced factor. Experimental Biology Online, 1997, 2, 1-12.	1.0	1