Christopher T Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2564629/publications.pdf

Version: 2024-02-01

134 papers

21,641 citations

65 h-index 128 g-index

140 all docs 140 docs citations

140 times ranked

22339 citing authors

#	Article	IF	CITATIONS
1	Prospects for Antibacterial Discovery and Development. Journal of the American Chemical Society, 2021, 143, 21127-21142.	13.7	51
2	Biologically generated carbon dioxide: nature's versatile chemical strategies for carboxy lyases. Natural Product Reports, 2020, 37, 100-135.	10.3	31
3	Historic Overview—Peptide Natural Products: Perspectives on Nascent Scaffold Morphings. , 2020, , 3-16.		O
4	Bi-allelic Variants in DYNC1I2 Cause Syndromic Microcephaly with Intellectual Disability, Cerebral Malformations, and Dysmorphic Facial Features. American Journal of Human Genetics, 2019, 104, 1073-1087.	6.2	19
5	Enzymatic Cascade Reactions in Biosynthesis. Angewandte Chemie - International Edition, 2019, 58, 6846-6879.	13.8	150
6	Enzymkaskadenreaktionen in der Biosynthese. Angewandte Chemie, 2019, 131, 6918-6952.	2.0	22
7	Chemical Biology: Here to Stay?. Israel Journal of Chemistry, 2019, 59, 7-17.	2.3	2
8	Eight Kinetically Stable but Thermodynamically Activated Molecules that Power Cell Metabolism. Chemical Reviews, 2018, 118, 1460-1494.	47.7	194
9	Recent Advances in Enzymatic Complexity Generation: Cyclization Reactions. Biochemistry, 2018, 57, 3087-3104.	2.5	35
10	Propofol: Milk of Amnesia. Cell, 2018, 175, 10-13.	28.9	83
11	Nature Builds Macrocycles and Heterocycles into Its Antimicrobial Frameworks: Deciphering Biosynthetic Strategy. ACS Infectious Diseases, 2018, 4, 1283-1299.	3.8	19
12	At the Intersection of Chemistry, Biology, and Medicine. Annual Review of Biochemistry, 2017, 86, 1-19.	11.1	18
13	Structure–Activity Relationship and Molecular Mechanics Reveal the Importance of Ring Entropy in the Biosynthesis and Activity of a Natural Product. Journal of the American Chemical Society, 2017, 139, 2541-2544.	13.7	43
14	Are highly morphed peptide frameworks lurking silently in microbial genomes valuable as next generation antibiotic scaffolds?. Natural Product Reports, 2017, 34, 687-693.	10.3	8
15	Oxidative Cyclization in Natural Product Biosynthesis. Chemical Reviews, 2017, 117, 5226-5333.	47.7	288
16	Structural elements of an NRPS cyclization domain and its intermodule docking domain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12432-12437.	7.1	65
17	Crystal structure of O-methyltransferase CalO6 from the calicheamicin biosynthetic pathway: a case of challenging structure determination at low resolution. BMC Structural Biology, 2015, 15, 13.	2.3	10
18	The Pseudomonas aeruginosa antimetabolite L -2-amino-4-methoxy-trans-3-butenoic acid (AMB) is made from glutamate and two alanine residues via a thiotemplate-linked tripeptide precursor. Frontiers in Microbiology, 2015, 6, 170.	3 . 5	52

#	Article	IF	CITATIONS
19	In Vitro Reconstitution of Metabolic Pathways: Insights into Nature's Chemical Logic. Synlett, 2015, 26, 1008-1025.	1.8	26
20	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	8.0	715
21	A chemocentric view of the natural product inventory. Nature Chemical Biology, 2015, 11, 620-624.	8.0	57
22	Nature loves nitrogen heterocycles. Tetrahedron Letters, 2015, 56, 3075-3081.	1.4	114
23	Biological Matching of Chemical Reactivity: Pairing Indole Nucleophilicity with Electrophilic Isoprenoids. ACS Chemical Biology, 2014, 9, 2718-2728.	3.4	42
24	Prospects for new antibiotics: a molecule-centered perspective. Journal of Antibiotics, 2014, 67, 7-22.	2.0	304
25	NOVEL CHEMISTRY STILL TO BE FOUND IN NATURE. , 2014, , .		0
26	EcdGHK Are Three Tailoring Iron Oxygenases for Amino Acid Building Blocks of the Echinocandin Scaffold. Journal of the American Chemical Society, 2013, 135, 4457-4466.	13.7	71
27	Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.	10.3	1,692
28	Flavoenzymes: Versatile catalysts in biosynthetic pathways. Natural Product Reports, 2013, 30, 175-200.	10.3	317
29	Short Pathways to Complexity Generation: Fungal Peptidyl Alkaloid Multicyclic Scaffolds from Anthranilate Building Blocks. ACS Chemical Biology, 2013, 8, 1366-1382.	3.4	80
30	Complexity Generation in Fungal Peptidyl Alkaloid Biosynthesis: A Two-Enzyme Pathway to the Hexacyclic MDR Export Pump Inhibitor Ardeemin. ACS Chemical Biology, 2013, 8, 741-748.	3.4	49
31	Nonproteinogenic Amino Acid Building Blocks for Nonribosomal Peptide and Hybrid Polyketide Scaffolds. Angewandte Chemie - International Edition, 2013, 52, 7098-7124.	13.8	314
32	Codon Randomization for Rapid Exploration of Chemical Space in Thiopeptide Antibiotic Variants. Chemistry and Biology, 2012, 19, 1600-1610.	6.0	77
33	Editorial: natural products themed issue. MedChemComm, 2012, 3, 852.	3.4	0
34	Stereochemical Outcome at Four Stereogenic Centers during Conversion of Prephenate to Tetrahydrotyrosine by BacABGF in the Bacilysin Pathway. Biochemistry, 2012, 51, 5622-5632.	2.5	18
35	<i>Pseudomonas syringae</i> Self-Protection from Tabtoxinine-β-Lactam by Ligase TblF and Acetylase Ttr. Biochemistry, 2012, 51, 7712-7725.	2.5	20
36	Three Ring Posttranslational Circuses: Insertion of Oxazoles, Thiazoles, and Pyridines into Protein-Derived Frameworks. ACS Chemical Biology, 2012, 7, 429-442.	3.4	88

#	Article	IF	CITATIONS
37	Olefin Isomerization Regiochemistries during Tandem Action of BacA and BacB on Prephenate in Bacilysin Biosynthesis. Biochemistry, 2012, 51, 3241-3251.	2.5	21
38	Aminobenzoates as building blocks for natural productassembly lines. Natural Product Reports, 2012, 29, 37-59.	10.3	82
39	Biosynthesis of Piperazic Acid via <i>N</i> ^{<i>5</i>} â€Hydroxyâ€Ornithine in <i>Kutzneria</i> spp. 744. ChemBioChem, 2012, 13, 972-976.	2.6	74
40	Chemical Logic and Enzymatic Machinery for Biological Assembly of Peptidyl Nucleoside Antibiotics. ACS Chemical Biology, 2011, 6, 1000-1007.	3.4	74
41	Transient Domain Interactions in Nonâ€Ribosomal Peptide Synthetases. FASEB Journal, 2011, 25, .	0.5	0
42	Thiazolyl Peptide Antibiotic Biosynthesis: A Cascade of Post-translational Modifications on Ribosomal Nascent Proteins. Journal of Biological Chemistry, 2010, 285, 27525-27531.	3.4	92
43	Catalysis at the Intersection of Biology, Chemistry, and Medicine. Journal of Biological Chemistry, 2010, 285, 29681-29689.	3.4	5
44	Prephenate Decarboxylases: A New Prephenate-Utilizing Enzyme Family That Performs Nonaromatizing Decarboxylation en Route to Diverse Secondary Metabolites. Biochemistry, 2010, 49, 9021-9023.	2.5	31
45	Genetic Interception and Structural Characterization of Thiopeptide Cyclization Precursors from <i>Bacillus cereus</i> . Journal of the American Chemical Society, 2010, 132, 12182-12184.	13.7	76
46	Natural Products Version 2.0: Connecting Genes to Molecules. Journal of the American Chemical Society, 2010, 132, 2469-2493.	13.7	407
47	The Genetic and Molecular Basis for Sunscreen Biosynthesis in Cyanobacteria. Science, 2010, 329, 1653-1656.	12.6	315
48	Investigation of Anticapsin Biosynthesis Reveals a Four-Enzyme Pathway to Tetrahydrotyrosine in <i>Bacillus subtilis</i> Biochemistry, 2010, 49, 912-923.	2.5	40
49	Anthranilate-Activating Modules from Fungal Nonribosomal Peptide Assembly Lines. Biochemistry, 2010, 49, 3351-3365.	2.5	84
50	Repurposing libraries of eukaryotic protein kinase inhibitors for antibiotic discovery. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1689-1690.	7.1	30
51	How Nature Morphs Peptide Scaffolds into Antibiotics. ChemBioChem, 2009, 10, 34-53.	2.6	111
52	New Ways to Squash Superbugs. Scientific American, 2009, 301, 44-51.	1.0	29
53	Three Siderophores from One Bacterial Enzymatic Assembly Line. Journal of the American Chemical Society, 2009, 131, 5056-5057.	13.7	65
54	Antibiotics for Emerging Pathogens. Science, 2009, 325, 1089-1093.	12.6	1,544

#	Article	IF	Citations
55	Inhibitors of Sterol Biosynthesis as <i>Staphylococcus aureus</i> Antibiotics. Angewandte Chemie - International Edition, 2008, 47, 5700-5702.	13.8	36
56	Morphing peptide backbones into heterocycles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5655-5656.	7.1	30
57	The Chemical Versatility of Natural-Product Assembly Lines. Accounts of Chemical Research, 2008, 41, 4-10.	15.6	208
58	Andrimid producers encode an acetyl-CoA carboxyltransferase subunit resistant to the action of the antibiotic. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13321-13326.	7.1	71
59	Revealing Coupling Patterns in Isoprenoid Alkylation Biocatalysis. ACS Chemical Biology, 2007, 2, 296-298.	3.4	11
60	Nonenzymatic Oxidative Steps Accompanying Action of the Cytochrome P450 Enzymes StaP and RebP in the Biosynthesis of Staurosporine and Rebeccamycin. Journal of the American Chemical Society, 2007, 129, 11016-11017.	13.7	68
61	BluB cannibalizes flavin to form the lower ligand of vitamin B12. Nature, 2007, 446, 449-453.	27.8	160
62	Natural Product Enzymatic Assembly Lines: Novel Features. FASEB Journal, 2007, 21, A147.	0.5	0
63	Novel oxidative strategies en route to rebeccamycin & amp; staurosporine. FASEB Journal, 2007, 21, A274.	0.5	0
64	Robert Heinz Abeles. Proceedings of the American Philosophical Society, 2007, 151, 331-5.	0.5	O
65	Protein Assembly Line Components in Prodigiosin Biosynthesis:Â Characterization of PigA,G,H,I,J. Journal of the American Chemical Society, 2006, 128, 12600-12601.	13.7	64
66	Staurosporine and Rebeccamycin Aglycones Are Assembled by the Oxidative Action of StaP, StaC, and RebC on Chromopyrrolic Acid. Journal of the American Chemical Society, 2006, 128, 12289-12298.	13.7	125
67	GliP, a Multimodular Nonribosomal Peptide Synthetase in Aspergillus fumigatus, Makes the Diketopiperazine Scaffold of Gliotoxin. Biochemistry, 2006, 45, 15029-15038.	2.5	139
68	Biological formation of pyrroles: Nature's logic and enzymatic machinery. Natural Product Reports, 2006, 23, 517.	10.3	407
69	Natural insights for chemical biologists. Nature Chemical Biology, 2005, 1, 122-124.	8.0	15
70	Protein Posttranslational Modifications: The Chemistry of Proteome Diversifications. Angewandte Chemie - International Edition, 2005, 44, 7342-7372.	13.8	1,275
71	Enzymatic Generation of the Chromopyrrolic Acid Scaffold of Rebeccamycin by the Tandem Action of RebO and RebDâ€. Biochemistry, 2005, 44, 15652-15663.	2.5	89
72	Introduction:  Antibiotic Resistance. Chemical Reviews, 2005, 105, 391-394.	47.7	144

#	Article	IF	CITATIONS
73	Polyketide and Nonribosomal Peptide Antibiotics: Modularity and Versatility. Science, 2004, 303, 1805-1810.	12.6	591
74	Polyketide-nonribosomal peptide epothilone antitumor agents: the EpoA, B, C subunits. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 448-455.	3.0	20
75	Der Aufbau von Vancomycin: so macht es die Natur. Angewandte Chemie, 2003, 115, 752-789.	2.0	46
76	Vancomycin Assembly: Nature's Way. Angewandte Chemie - International Edition, 2003, 42, 730-765.	13.8	341
77	Where will new antibiotics come from?. Nature Reviews Microbiology, 2003, 1, 65-70.	28.6	636
78	Antibiotic Glycosyltransferases:  Antibiotic Maturation and Prospects for Reprogramming. Journal of Medicinal Chemistry, 2003, 46, 3425-3436.	6.4	71
79	Genetics and Assembly Line Enzymology of Siderophore Biosynthesis in Bacteria. Microbiology and Molecular Biology Reviews, 2002, 66, 223-249.	6.6	697
80	Combinatorial Biosynthesis of Antibiotics: Challenges and Opportunities. ChemBioChem, 2002, 3, 124-134.	2.6	175
81	Yersiniabactin Synthetase. Chemistry and Biology, 2002, 9, 333-344.	6.0	173
82	Cyclization of Backbone-Substituted Peptides Catalyzed by the Thioesterase Domain from the Tyrocidine Nonribosomal Peptide Synthetaseâ€. Biochemistry, 2001, 40, 7092-7098.	2.5	105
83	Generality of Peptide Cyclization Catalyzed by Isolated Thioesterase Domains of Nonribosomal Peptide Synthetasesâ€. Biochemistry, 2001, 40, 7099-7108.	2.5	151
84	Substrate Recognition and Selection by the Initiation Module PheATE of Gramicidin S Synthetase. Journal of the American Chemical Society, 2001, 123, 11208-11218.	13.7	53
85	Tandem Action of Glycosyltransferases in the Maturation of Vancomycin and Teicoplanin Aglycones:Â Novel Glycopeptidesâ€,‡. Biochemistry, 2001, 40, 4745-4755.	2.5	157
86	The Loading Module of Rifamycin Synthetase Is an Adenylationâ ² Thiolation Didomain with Substrate Tolerance for Substituted Benzoates. Biochemistry, 2001, 40, 6116-6123.	2.5	62
87	Yersiniabactin Synthetase: Probing the Recognition of Carrier Protein Domains by the Catalytic Heterocyclization Domains, Cy1 and Cy2, in the Chain-Initiating HMWP2 Subunitâ€. Biochemistry, 2001, 40, 5313-5321.	2.5	32
88	Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature, 2000, 407, 215-218.	27.8	311
89	Reconstitution and Characterization of the Vibrio cholerae Vibriobactin Synthetase from VibB, VibE, VibF, and VibHâ€. Biochemistry, 2000, 39, 15522-15530.	2.5	134
90	Selectivity of the Yersiniabactin Synthetase Adenylation Domain in the Two-Step Process of Amino Acid Activation and Transfer to a Holo-Carrier Protein Domainâ€. Biochemistry, 2000, 39, 2297-2306.	2.5	51

#	Article	IF	CITATIONS
91	Vibriobactin Biosynthesis inVibrio cholerae: VibH Is an Amide Synthase Homologous to Nonribosomal Peptide Synthetase Condensation Domainsâ€. Biochemistry, 2000, 39, 15513-15521.	2.5	105
92	Assembly of thePseudomonas aeruginosaNonribosomal Peptide Siderophore Pyochelin: In Vitro Reconstitution of Aryl-4,2-bisthiazoline Synthetase Activity from PchD, PchE, and PchFâ€. Biochemistry, 1999, 38, 14941-14954.	2.5	129
93	Aminoacyl-CoAs as Probes of Condensation Domain Selectivity in Nonribosomal Peptide Synthesis. Science, 1999, 284, 486-489.	12.6	313
94	Determinants for Differential Effects on d-Ala-d-Lactate vs d-Ala-d-Ala Formation by the VanA Ligase from Vancomycin-Resistant Enterococci. Biochemistry, 1999, 38, 14006-14022.	2.5	43
95	Tandem Heterocyclization Activity of the Multidomain 230 kDa HMWP2 Subunit of Yersinia pestis Yersiniabactin Synthetase:  Interaction of the 1â^1382 and 1383â^2035 Fragments. Biochemistry, 1999, 38, 14023-14035.	2.5	44
96	Posttranslational Heterocyclization of Cysteine and Serine Residues in the Antibiotic Microcin B17: Distributivity and Directionalityâ€. Biochemistry, 1999, 38, 15623-15630.	2.5	83
97	Localization of Labile Posttranslational Modifications by Electron Capture Dissociation:Â The Case of Î ³ -Carboxyglutamic Acid. Analytical Chemistry, 1999, 71, 4250-4253.	6.5	362
98	Characterization of Sfp, aBacillus subtilisPhosphopantetheinyl Transferase for Peptidyl Carrier Protein Domains in Peptide Synthetasesâ€. Biochemistry, 1998, 37, 1585-1595.	2.5	643
99	Reconstitution and Characterization of theEscherichia coliEnterobactin Synthetase from EntB, EntE, and EntFâ€. Biochemistry, 1998, 37, 2648-2659.	2.5	218
100	The Nonribosomal Peptide Synthetase HMWP2 Forms a Thiazoline Ring during Biogenesis of Yersiniabactin, an Iron-Chelating Virulence Factor of Yersiniapestisâ€. Biochemistry, 1998, 37, 11637-11650.	2.5	155
101	Stereochemical Course of Enzymatic Enolpyruvyl Transfer and Catalytic Conformation of the Active Site Revealed by the Crystal Structure of the Fluorinated Analogue of the Reaction Tetrahedral Intermediate Bound to the Active Site of the C115A Mutant of MurA‡. Biochemistry, 1998, 37, 2572-2577.	2.5	71
102	Mutational Analysis of Posttranslational Heterocycle Biosynthesis in the Gyrase Inhibitor Microcin B17: Distance Dependence from Propeptide and Tolerance for Substitution in a GSCG Cyclizable Sequenceâ€. Biochemistry, 1998, 37, 4125-4136.	2.5	47
103	Design, Synthesis, and Biochemical Evaluation of Phosphonate and Phosphonamidate Analogs of Glutathionylspermidine as Inhibitors of Glutathionylspermidine Synthetase/Amidase fromEscherichia coli. Journal of Medicinal Chemistry, 1997, 40, 3842-3850.	6.4	35
104	d-Alanine:d-Alanine Ligase:Â Phosphonate and Phosphinate Intermediates with Wild Type and the Y216F Mutantâ€,‡. Biochemistry, 1997, 36, 2531-2538.	2.5	80
105	Utilization of Enzymatically Phosphopantetheinylated Acyl Carrier Proteins and Acetylâ^'Acyl Carrier Proteins by the Actinorhodin Polyketide Synthaseâ€. Biochemistry, 1997, 36, 11757-11761.	2.5	45
106	X-ray Crystal Structures of the S229A Mutant and Wild-Type MurB in the Presence of the Substrate Enolpyruvyl-UDP-N-Acetylglucosamine at 1.8-Ã Resolution,. Biochemistry, 1997, 36, 806-811.	2.5	69
107	Mutational Analysis of Potential Zinc-Binding Residues in the Active Site of the Enterococcal d-Ala-d-Ala Dipeptidase VanX. Biochemistry, 1997, 36, 10498-10505.	2.5	104
108	The leader peptide is essential for the postâ€translational modification of the DNAâ€gyrase inhibitor microcin B17. Molecular Microbiology, 1997, 23, 161-168.	2.5	60

#	Article	IF	CITATIONS
109	Acetyltransfer Precedes Uridylyltransfer in the Formation of UDP-N-acetylglucosamine in Separable Active Sites of the Bifunctional GlmU Protein ofEscherichia coliâ€. Biochemistry, 1996, 35, 579-585.	2.5	98
110	Kinetic Comparison of the Specificity of the Vancomycin Resistance Kinase VanS for Two Response Regulators, VanR and PhoBâ€. Biochemistry, 1996, 35, 4732-4740.	2.5	83
111	Gain ofd-Alanyl-d-lactate ord-Lactyl-d-alanine Synthetase Activities in Three Active-Site Mutants of theEscherichia colid-Alanyl-d-alanine Ligase Bâ€. Biochemistry, 1996, 35, 10464-10471.	2.5	49
112	Characterization of a Cys115 to Asp Substitution in the Escherichia coliCell Wall Biosynthetic Enzyme UDP-GlcNAc Enolpyruvyl Transferase (MurA) That Confers Resistance to Inactivation by the Antibiotic Fosfomycinâ€. Biochemistry, 1996, 35, 4923-4928.	2.5	200
113	Analysis of Fluoromethyl Group Chirality Establishes a Common Stereochemical Course for the Enolpyruvyl Transfers Catalyzed by EPSP Synthase and UDP-GlcNAc Enolpyruvyl Transferaseâ€. Biochemistry, 1996, 35, 5435-5440.	2.5	28
114	Competitive inhibition of calcineurin phosphatase activity by its autoinhibitory domain. Biochemical Journal, 1996, 320, 879-884.	3.7	42
115	A new enzyme superfamily â€" the phosphopantetheinyl transferases. Chemistry and Biology, 1996, 3, 923-936.	6.0	746
116	An enzyme–substrate complex involved in bacterial cell wall biosynthesis. Nature Structural Biology, 1995, 2, 644-653.	9.7	78
117	Crystallization and preliminary Xâ€ray crystallographic studies of UDPâ€∢i>N⟨/i>â€acetylenolpyruvylglucosamine reductase. Protein Science, 1994, 3, 1125-1127.	7.6	12
118	Functional association of cyclophilin A with HIV-1 virions. Nature, 1994, 372, 363-365.	27.8	650
119	Substrate specificities of catalytic fragments of protein tyrosine phosphatases (HPTP $\langle i \rangle \hat{l}^2 \langle i \rangle$, LAR, and) Tj ETQq1 Protein Science, 1993, 2, 977-984.		
120	Identification of a common proteaseâ€sensitive region in <scp>d</scp> â€alanylâ€ <scp>d</scp> â€alanylâ€ <scp>d</scp> â€alanylâ€ <scp>d</scp> â€actate ligases and photoaffinity labeling with 8â€azido ATP. Protein Science, 1993, 2, 1765-1769.	7.6	15
121	Clonal dispersion in proliferative layers of developing cerebral cortex. Nature, 1993, 362, 632-635.	27.8	264
122	Crystallization and preliminary crystallographic analysis of trypanothione reductase from Trypanosoma cruzi, the causative agent of Chagas' disease. FEBS Letters, 1993, 317, 105-108.	2.8	27
123	Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science, 1992, 255, 434-440.	12.6	598
124	Characterization of EntF as a serineâ€activating enzyme. Protein Science, 1992, 1, 549-556.	7.6	42
125	Overexpression, purification, and characterization of yeast cyclophilins A and B. Protein Science, 1992, 1, 961-969.	7.6	21
126	83â€Kilodalton heat shock proteins of trypanosomes are potent peptideâ€stimulated ATPases. Protein Science, 1992, 1, 970-979.	7.6	48

#	Article	IF	CITATION
127	Active site mutants of human cyclophilin A separate peptidylâ€prolyl isomerase activity from cyclosporin A binding and calcineurin inhibition. Protein Science, 1992, 1, 1092-1099.	7.6	279
128	NMR analysis of regioselectivity in dephosphorylation of a triphosphotyrosyl dodecapeptide autophosphorylation site of the insulin receptor by a catalytic fragment of LAR phosphotyrosine phosphatase. Protein Science, 1992, 1, 1353-1362.	7.6	15
129	<i>Response</i> : The Dispersion of Neuronal Clones Across the Cerebral Cortex. Science, 1992, 258, 317-320.	12.6	5
130	NMR studies of [U-13C]cyclosporin A bound to human cyclophilin B. FEBS Letters, 1991, 290, 195-199.	2.8	17
131	The 15 N-terminal amino acids of hexokinase II are not required for in vivo function: Analysis of a truncated form of hexokinase II inSaccharomyces cerevisiae. Proteins: Structure, Function and Bioinformatics, 1989, 5, 218-223.	2.6	13
132	Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts. FASEB Journal, 1988, 2, 124-130.	0.5	92
133	Siderophore Biosynthesis in Bacteria., 0, , 18-37.		13
134	Regulation of Glycopeptide Resistance Genes of Enterococcal Transposon Tn1546 by the VanR-VanS Two-Component Regulatory System., 0,, 387-391.		2