
## Antonio P Carobrez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2564117/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Dexamethasone impairs encoding and expression of aversive conditioning promoted by pentylenetetrazole. Behavioural Pharmacology, 2020, 31, 435-447.                                                                                   | 1.7 | 0         |
| 2  | Inactivation of the dorsolateral periaqueductal gray matter impairs the promoting influence of stress on fear memory during retrieval. Brain Structure and Function, 2019, 224, 3117-3132.                                            | 2.3 | 5         |
| 3  | Periaqueductal gray glutamatergic, cannabinoid and vanilloid receptor interplay in defensive behavior and aversive memory formation. Neuropharmacology, 2018, 135, 399-411.                                                           | 4.1 | 22        |
| 4  | The periaqueductal gray and primal emotional processing critical to influence complex defensive responses, fear learning and reward seeking. Neuroscience and Biobehavioral Reviews, 2017, 76, 39-47.                                 | 6.1 | 105       |
| 5  | Acquisition and expression of fear memories are distinctly modulated along the dorsolateral periaqueductal gray axis of rats exposed to predator odor. Behavioural Brain Research, 2016, 315, 160-167.                                | 2.2 | 18        |
| 6  | Olfactory instruction for fear: neural system analysis. Frontiers in Neuroscience, 2015, 9, 276.                                                                                                                                      | 2.8 | 27        |
| 7  | Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task. Neuropharmacology, 2014, 79, 201-211.                                         | 4.1 | 28        |
| 8  | Anxiogenic-like profile of Wistar adult rats based on the pilocarpine model: an animal model for trait anxiety?. Psychopharmacology, 2013, 227, 209-219.                                                                              | 3.1 | 18        |
| 9  | Systemic or intra-prelimbic cortex infusion of prazosin impairs fear memory reconsolidation.<br>Behavioural Brain Research, 2013, 244, 137-141.                                                                                       | 2.2 | 32        |
| 10 | Dorsolateral periaqueductal gray stimulation prior to retrieval potentiates a contextual fear memory in rats. Behavioural Brain Research, 2013, 237, 76-81.                                                                           | 2.2 | 6         |
| 11 | Enhanced noradrenergic activity potentiates fear memory consolidation and reconsolidation by differentially recruiting $\hat{l}\pm 1$ - and $\hat{l}^2$ -adrenergic receptors. Learning and Memory, 2013, 20, 210-219.                | 1.3 | 93        |
| 12 | Sex differences in fear memory and extinction of mice with forebrainâ€specific disruption of the mineralocorticoid receptor. European Journal of Neuroscience, 2012, 36, 3096-3102.                                                   | 2.6 | 61        |
| 13 | The Dorsolateral Periaqueductal Gray and Its Role in Mediating Fear Learning to Life Threatening Events. PLoS ONE, 2012, 7, e50361.                                                                                                   | 2.5 | 51        |
| 14 | Acquisition of Pavlovian Fear Conditioning Using β-Adrenoceptor Activation of the Dorsal<br>Premammillary Nucleus as an Unconditioned Stimulus to Mimic Live Predator-Threat Exposure.<br>Neuropsychopharmacology, 2011, 36, 926-939. | 5.4 | 36        |
| 15 | The dorsal periaqueductal gray modulates the increased fear-like behavior exhibited by experienced rats in the elevated plus-maze. Behavioural Brain Research, 2010, 206, 120-126.                                                    | 2.2 | 11        |
| 16 | Impairment of contextual conditioned fear extinction after microinjection of alpha-1-adrenergic blocker prazosin into the medial prefrontal cortex. Behavioural Brain Research, 2010, 211, 89-95.                                     | 2.2 | 29        |
| 17 | Activity in prelimbic cortex is required for adjusting the anxiety response level during the elevated plus-maze retest. Neuroscience, 2010, 170, 214-222.                                                                             | 2.3 | 57        |
| 18 | Role of beta-adrenergic receptors in the ventromedial prefrontal cortex during contextual fear extinction in rats. Neurobiology of Learning and Memory, 2010, 94, 318-328.                                                            | 1.9 | 49        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | P.1.g.024 The influence of corticosteroid receptors on olfactory fear conditioning. European Neuropsychopharmacology, 2010, 20, S322.                                                                               | 0.7 | 0         |
| 20 | P.4.b.016 Ventromedial prefrontal cortex activity is required for anxiety expression: distinct neurochemical mechanisms evidence. European Neuropsychopharmacology, 2010, 20, S538-S539.                            | 0.7 | 3         |
| 21 | Neuroanatomy of Anxiety. Current Topics in Behavioral Neurosciences, 2009, 2, 77-96.                                                                                                                                | 1.7 | 93        |
| 22 | Olfactory fear conditioning paradigm in rats: Effects of midazolam, propranolol or scopolamine.<br>Neurobiology of Learning and Memory, 2009, 91, 32-40.                                                            | 1.9 | 61        |
| 23 | Pentylenetetrazole as an unconditioned stimulus for olfactory and contextual fear conditioning in rats. Neurobiology of Learning and Memory, 2009, 92, 512-518.                                                     | 1.9 | 18        |
| 24 | P.4.b.006 Atenolol impairs the acquisition and expression of olfactory fear conditioning in rats.<br>European Neuropsychopharmacology, 2009, 19, S599-S600.                                                         | 0.7 | 1         |
| 25 | Sensing danger through the olfactory system: The role of the hypothalamic dorsal premammillary nucleus. Neuroscience and Biobehavioral Reviews, 2008, 32, 1228-1235.                                                | 6.1 | 52        |
| 26 | Aversive learning as a mechanism for lack of repeated anxiolytic-like effect in the elevated plus-maze.<br>Pharmacology Biochemistry and Behavior, 2008, 90, 545-550.                                               | 2.9 | 29        |
| 27 | Activation of dorsal periaqueductal gray by glycine produces long lasting hyponociception in rats without overt defensive behaviors. Life Sciences, 2008, 83, 118-121.                                              | 4.3 | 10        |
| 28 | Frequency of climbing behavior as a predictor of altered motor activity in rat forced swimming test.<br>Neuroscience Letters, 2008, 445, 170-173.                                                                   | 2.1 | 31        |
| 29 | Interplay between glutamate and serotonin within the dorsal periaqueductal gray modulates<br>anxiety-related behavior of rats exposed to the elevated plus-maze. Behavioural Brain Research, 2008,<br>194, 181-186. | 2.2 | 22        |
| 30 | P.4.f.005 Beta-adrenergic blockade impairs fear extinction in rats: role of the medial prefrontal cortex. European Neuropsychopharmacology, 2008, 18, S503.                                                         | 0.7 | 0         |
| 31 | New Perspectives on β-Adrenergic Mediation of Innate and Learned Fear Responses to Predator Odor.<br>Journal of Neuroscience, 2008, 28, 13296-13302.                                                                | 3.6 | 54        |
| 32 | Chapter 4.3 Modulation of anxiety behaviors by 5-HT-interacting drugs. Handbook of Behavioral Neuroscience, 2008, , 241-268.                                                                                        | 0.7 | 5         |
| 33 | Distinct ventral and dorsal hippocampus AP5 anxiolytic effects revealed in the elevated plus-maze task<br>in rats. Neurobiology of Learning and Memory, 2007, 88, 177-185.                                          | 1.9 | 59        |
| 34 | P.1.c.030 Antidepressant treatment reduces fos-like immunoreactivity in different regions of periaqueductal gray matter. European Neuropsychopharmacology, 2006, 16, S239-S240.                                     | 0.7 | 0         |
| 35 | P.1.d.012 Propranolol restores the anxiolytic action of midazolan during the retest in the elevated plus maze test. European Neuropsychopharmacology, 2006, 16, S256.                                               | 0.7 | 0         |
| 36 | Antidepressant treatment reduces Fos-like immunoreactivity induced by swim stress in different columns of the periaqueductal gray matter. Brain Research Bulletin, 2006, 70, 414-421.                               | 3.0 | 26        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Elevated T-maze evaluation of anxiety and memory effects of NMDA/glycine-B site ligands injected into the dorsal periaqueductal gray matter and the superior colliculus of rats. Neuropharmacology, 2006, 51, 203-212.   | 4.1 | 16        |
| 38 | Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on.<br>Neuroscience and Biobehavioral Reviews, 2005, 29, 1193-1205.                                                    | 6.1 | 788       |
| 39 | Structure of the rat behaviour in the forced swimming test. Behavioural Brain Research, 2005, 158, 243-250.                                                                                                              | 2.2 | 82        |
| 40 | Pilocarpine prevents age-related spatial learning impairments in rats. Behavioural Brain Research, 2005, 158, 263-268.                                                                                                   | 2.2 | 20        |
| 41 | Enhanced dorsolateral periaqueductal gray activity counteracts the anxiolytic response to<br>midazolam on the elevated plus-maze Trial 2 in rats. Behavioural Brain Research, 2005, 162, 99-107.                         | 2.2 | 22        |
| 42 | Organization of single components of defensive behaviors within distinct columns of periaqueductal gray matter of the rat: role of N-METHYL-d-aspartic acid glutamate receptors. Neuroscience, 2004, 125, 71-89.         | 2.3 | 125       |
| 43 | Scopolamine given pre-Trial 1 prevents the one-trial tolerance phenomenon in the elevated plus-maze<br>Trial 2. Behavioural Pharmacology, 2004, 15, 45-54.                                                               | 1.7 | 40        |
| 44 | Anxiolytic-like effects of NMDA/glycine-B receptor ligands are abolished during the elevated plus-maze trial 2 in rats. Psychopharmacology, 2003, 170, 335-342.                                                          | 3.1 | 39        |
| 45 | Lack of midazolam-induced anxiolysis in the plus-maze Trial 2 is dependent on the length of Trial 1.<br>Pharmacology Biochemistry and Behavior, 2003, 74, 395-400.                                                       | 2.9 | 40        |
| 46 | Elevated T-maze as an animal model of memory: effects of scopolamine. Behavioural Pharmacology, 2002, 13, 139-148.                                                                                                       | 1.7 | 39        |
| 47 | Dorsal periaqueductal gray matter inhibits passive coping strategy elicited by forced swimming stress in rats. Neuroscience Letters, 2002, 335, 87-90.                                                                   | 2.1 | 16        |
| 48 | Behavioral profile of rats submitted to session 1-session 2 in the elevated plus-maze during<br>diurnal/nocturnal phases and under different illumination conditions. Behavioural Brain Research,<br>2002, 132, 135-143. | 2.2 | 92        |
| 49 | Prior maze experience required to alter midazolam effects in rats submitted to the elevated plus-maze.<br>Pharmacology Biochemistry and Behavior, 2002, 72, 449-455.                                                     | 2.9 | 59        |
| 50 | Anxiolytic effects of ethanol and phenobarbital are abolished in test-experienced rats submitted to the elevated plus maze. Pharmacology Biochemistry and Behavior, 2002, 73, 963-969.                                   | 2.9 | 61        |
| 51 | The brain decade in debate: II. Panic or anxiety? From animal models to a neurobiological basis.<br>Brazilian Journal of Medical and Biological Research, 2001, 34, 145-154.                                             | 1.5 | 21        |
| 52 | Modulation of defensive behavior by periaqueductal gray NMDA/glycine-B receptor. Neuroscience and Biobehavioral Reviews, 2001, 25, 697-709.                                                                              | 6.1 | 72        |
| 53 | Previous maze experience required to increase open arms avoidance in rats submitted to the elevated plus-maze model of anxiety. Behavioural Brain Research, 2000, 108, 197-203.                                          | 2.2 | 138       |
| 54 | Long-lasting inhibitory avoidance acquisition in rats submitted to the elevated T-maze model of anxiety. Behavioural Brain Research, 1999, 101, 59-64.                                                                   | 2.2 | 23        |

## ANTONIO P CAROBREZ

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effects of glycine or (±)-3-amino-l-hydroxy-2-pyrrolidone microinjections along the rostrocaudal axis<br>of the dorsal periaqueductal gray matter on rats' performance in the elevated plus-maze task<br>Behavioral Neuroscience, 1999, 113, 196-203. | 1.2 | 28        |
| 56 | Effects of glycine or (±)-3-amino-l-hydroxy-2-pyrrolidone microinjections along the rostrocaudal axis<br>of the dorsal periaqueductal gray matter on rats' performance in the elevated plus-maze task<br>Behavioral Neuroscience, 1999, 113, 196-203. | 1.2 | 6         |
| 57 | NMDA-coupled periaqueductal gray glycine receptors modulate anxioselective drug effects on plus-maze performance. Behavioural Brain Research, 1998, 90, 157-165.                                                                                      | 2.2 | 34        |
| 58 | Individual Housing From Rearing Modifies the Performance of Young Rats on the Elevated Plus-Maze Apparatus. Physiology and Behavior, 1996, 60, 1391-1396.                                                                                             | 2.1 | 76        |
| 59 | Anxiogenic-like effect of glycine and d-serine microinjected into dorsal periaqueductal gray matter of rats. Neuroscience Letters, 1995, 189, 93-96.                                                                                                  | 2.1 | 39        |
| 60 | Anxiolytic effect of glycine antagonists microinjected into the dorsal periaqueductal grey.<br>Psychopharmacology, 1994, 113, 565-569.                                                                                                                | 3.1 | 48        |
| 61 | Influence of gender and age on performance of rats in the elevated plus maze apparatus. Behavioural<br>Brain Research, 1993, 56, 177-180.                                                                                                             | 2.2 | 210       |
| 62 | MK-801 produces a reduction in anxiety-related antipredator defensiveness in male and female rats and a gender-dependent increase in locomotor behavior. Psychopharmacology, 1992, 108, 352-362.                                                      | 3.1 | 77        |
| 63 | Anxiolytic effect in the elevated plus-maze of the NMDA receptor antagonist AP7 microinjected into the dorsal periaqueductal grey. Psychopharmacology, 1991, 103, 91-94.                                                                              | 3.1 | 137       |
| 64 | Sex effects in defensive behavior: Baseline differences and drug interactions. Neuroscience and Biobehavioral Reviews, 1991, 15, 461-468.                                                                                                             | 6.1 | 131       |
| 65 | The 5-HT puzzle: a creative analysis. Journal of Psychopharmacology, 1991, 5, 330-331.                                                                                                                                                                | 4.0 | 0         |
| 66 | Neuroeffector mechanisms of the defense reaction in the rat. Physiology and Behavior, 1983, 31, 439-444.                                                                                                                                              | 2.1 | 27        |