
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2563956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis and Cartilage, 2010, 18, S17-S23.	1.3	1,151
2	ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature, 2005, 434, 648-652.	27.8	826
3	Matrix metalloproteinase 13–deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis and Rheumatism, 2009, 60, 3723-3733.	6.7	655
4	Are animal models useful for studying human disc disorders/degeneration?. European Spine Journal, 2008, 17, 2-19.	2.2	611
5	Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biology, 2000, 19, 333-344.	3.6	259
6	n-3 Fatty Acids Specifically Modulate Catabolic Factors Involved in Articular Cartilage Degradation. Journal of Biological Chemistry, 2000, 275, 721-724.	3.4	227
7	Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids. Arthritis and Rheumatism, 2002, 46, 1544-1553.	6.7	214
8	Post-traumatic osteoarthritis: from mouse models to clinical trials. Nature Reviews Rheumatology, 2013, 9, 485-497.	8.0	189
9	Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthritis and Cartilage, 2011, 19, 874-885.	1.3	172
10	The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in sheep and goats. Osteoarthritis and Cartilage, 2010, 18, S80-S92.	1.3	171
11	Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. Journal of Clinical Investigation, 2007, 117, 1627-1636.	8.2	171
12	Histopathology atlas of animal model systems – overview of guiding principles. Osteoarthritis and Cartilage, 2010, 18, S2-S6.	1.3	149
13	Proteoglycan degradation by the ADAMTS family of proteinases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1616-1629.	3.8	148
14	Proteoglycan 4 downregulation in a sheep meniscectomy model of early osteoarthritis. Arthritis Research and Therapy, 2006, 8, R41.	3.5	140
15	Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nature Genetics, 2011, 43, 1142-1146.	21.4	134
16	What constitutes an "animal model of osteoarthritis―– the need for consensus?. Osteoarthritis and Cartilage, 2012, 20, 261-267.	1.3	129
17	On the predictive utility of animal models of osteoarthritis. Arthritis Research and Therapy, 2015, 17, 225.	3.5	123
18	A commentary on modelling osteoarthritis pain in small animals. Osteoarthritis and Cartilage, 2013, 21, 1316-1326.	1.3	121

2

#	Article	IF	CITATIONS
19	The Circadian Clock in Murine Chondrocytes Regulates Genes Controlling Key Aspects of Cartilage Homeostasis. Arthritis and Rheumatism, 2013, 65, 2334-2345.	6.7	117
20	Matrix metalloproteinases are involved in C-terminal and interglobular domain processing of cartilage aggrecan in late stage cartilage degradation. Matrix Biology, 2002, 21, 271-288.	3.6	115
21	Evidence for articular cartilage regeneration in MRL/MpJ mice. Osteoarthritis and Cartilage, 2008, 16, 1319-1326.	1.3	115
22	Effects of culture conditions and exposure to catabolic stimulators (IL-1 and retinoic acid) on the expression of matrix metalloproteinases (MMPs) and disintegrin metalloproteinases (ADAMs) by articular cartilage chondrocytes. Matrix Biology, 1999, 18, 225-237.	3.6	113
23	Fragmentation of decorin, biglycan, lumican and keratocan is elevated in degenerate human meniscus, knee and hip articular cartilages compared with age-matched macroscopically normal and control tissues. Arthritis Research and Therapy, 2008, 10, R79.	3.5	113
24	Expression and Activity of Articular Cartilage Hyaluronidases. Biochemical and Biophysical Research Communications, 1998, 251, 824-829.	2.1	111
25	Multifidus Muscle Changes After Back Injury Are Characterized by Structural Remodeling of Muscle, Adipose and Connective Tissue, but Not Muscle Atrophy. Spine, 2015, 40, 1057-1071.	2.0	105
26	IL-6 and its soluble receptor augment aggrecanase-mediated proteoglycan catabolism in articular cartilage. Matrix Biology, 2000, 19, 549-553.	3.6	101
27	ADAMTS-1-Knockout mice do not exhibit abnormalities in aggrecan turnover in vitro or in vivo. Arthritis and Rheumatism, 2005, 52, 1461-1472.	6.7	100
28	Aggrecan, versican and type VI collagen are components of annular translamellar crossbridges in the intervertebral disc. European Spine Journal, 2008, 17, 314-324.	2.2	95
29	Depletion of Proteaseâ€Activated Receptor 2 but Not Proteaseâ€Activated Receptor 1 May Confer Protection Against Osteoarthritis in Mice Through Extracartilaginous Mechanisms. Arthritis and Rheumatology, 2014, 66, 3337-3348.	5.6	95
30	Drug Insight: aggrecanases as therapeutic targets for osteoarthritis. Nature Clinical Practice Rheumatology, 2008, 4, 420-427.	3.2	89
31	The Development of Disease-Modifying Therapies for Osteoarthritis (DMOADs): The Evidence to Date. Drug Design, Development and Therapy, 2021, Volume 15, 2921-2945.	4.3	89
32	Animal Models of Osteoarthritis. Current Rheumatology Reviews, 2008, 4, 175-182.	0.8	88
33	The role of fat and inflammation in the pathogenesis and management of osteoarthritis. Rheumatology, 2018, 57, iv10-iv21.	1.9	85
34	Significant synovial pathology in a meniscectomy model of osteoarthritis: modification by intra-articular hyaluronan therapy. Rheumatology, 2008, 47, 1172-1178.	1.9	81
35	Variation in proteoglycan metabolism by articular chondrocytes in different joint regions is determined by post-natal mechanical loading. Osteoarthritis and Cartilage, 1997, 5, 49-62.	1.3	79
36	Topographic variation in biglycan and decorin synthesis by articular cartilage in the early stages of osteoarthritis: An experimental study in sheep. Journal of Orthopaedic Research, 1996, 14, 433-444.	2.3	78

#	Article	IF	CITATIONS
37	Regional assessment of articular cartilage gene expression and small proteoglycan metabolism in an	3.5	77
38	Expression of ADAMTS Homologues in Articular Cartilage. Biochemical and Biophysical Research Communications, 1999, 260, 318-322.	2.1	76
39	Aggrecanase versus matrix metalloproteinases in the catabolism of the interglobular domain of aggrecan in vitro. Biochemical Journal, 1999, 344, 61.	3.7	76
40	S100A8 and S100A9 in experimental osteoarthritis. Arthritis Research and Therapy, 2010, 12, R16.	3.5	72
41	Perlecan, the "jack of all trades―proteoglycan of cartilaginous weightâ€bearing connective tissues. BioEssays, 2008, 30, 457-469.	2.5	69
42	Recent advances in annular pathobiology provide insights into rim-lesion mediated intervertebral disc degeneration and potential new approaches to annular repair strategies. European Spine Journal, 2008, 17, 1131-1148.	2.2	67
43	Modulation of aggrecan and ADAMTS expression in ovine tendinopathy induced by altered strain. Arthritis and Rheumatism, 2008, 58, 1055-1066.	6.7	67
44	Activation of Matrix Metalloproteinases 2, 9, and 13 by Activated Protein C in Human Osteoarthritic Cartilage Chondrocytes. Arthritis and Rheumatology, 2014, 66, 1525-1536.	5.6	67
45	Cartilage Intermediate Layer Protein 2 (CILP-2) Is Expressed in Articular and Meniscal Cartilage and Down-regulated in Experimental Osteoarthritis. Journal of Biological Chemistry, 2011, 286, 37758-37767.	3.4	66
46	Tetanus in the Horse: A Review of 20 Cases (1970 to 1990). Journal of Veterinary Internal Medicine, 1994, 8, 128-132.	1.6	65
47	ls Cartilage Matrix Breakdown an Appropriate Therapeutic Target in Osteoarthritis – Insights from Studies of Aggrecan and Collagen Proteolysis?. Current Drug Targets, 2010, 11, 561-575.	2.1	65
48	Biglycan and fibromodulin fragmentation correlates with temporal and spatial annular remodelling in experimentally injured ovine intervertebral discs. European Spine Journal, 2007, 16, 2193-2205.	2.2	64
49	Investigating ADAMTS-mediated aggrecanolysis in mouse cartilage. Nature Protocols, 2011, 6, 388-404.	12.0	63
50	Differential Expression of Aggrecanase and Matrix Metalloproteinase Activity in Chondrocytes Isolated from Bovine and Porcine Articular Cartilage. Journal of Biological Chemistry, 1998, 273, 30576-30582.	3.4	62
51	Pathogenesis of post-traumatic OA with a view to intervention. Best Practice and Research in Clinical Rheumatology, 2014, 28, 17-30.	3.3	61
52	Cyclosporin A inhibition of aggrecanase-mediated proteoglycan catabolism in articular cartilage. Arthritis and Rheumatism, 2002, 46, 124-129.	6.7	60
53	Proteomic characterization of mouse cartilage degradation in vitro. Arthritis and Rheumatism, 2008, 58, 3120-3131.	6.7	58
54	Zonal differences in meniscus matrix turnover and cytokine response. Osteoarthritis and Cartilage, 2012, 20, 49-59.	1.3	57

4

#	Article	IF	CITATIONS
55	Transcriptomics of Wildâ€Type Mice and Mice Lacking ADAMTSâ€5 Activity Identifies Genes Involved in Osteoarthritis Initiation and Cartilage Destruction. Arthritis and Rheumatism, 2013, 65, 1547-1560.	6.7	56
56	Stem Cell-Derived Extracellular Vesicles for Treating Joint Injury and Osteoarthritis. Nanomaterials, 2019, 9, 261.	4.1	56
57	Reduction of arthritis severity in protease-activated receptor-deficient mice. Arthritis and Rheumatism, 2005, 52, 1325-1332.	6.7	54
58	Can Proinflammatory Cytokine Gene Expression Explain Multifidus Muscle Fiber Changes After an Intervertebral Disc Lesion?. Spine, 2014, 39, 1010-1017.	2.0	54
59	Effects ofn-3 fatty acids on cartilage metabolism. Proceedings of the Nutrition Society, 2002, 61, 381-389.	1.0	53
60	Mechanical Destabilization Induced by Controlled Annular Incision of the Intervertebral Disc Dysregulates Metalloproteinase Expression and Induces Disc Degeneration. Spine, 2012, 37, 18-25.	2.0	53
61	Using mouse models to investigate the pathophysiology, treatment, and prevention of postâ€ŧraumatic osteoarthritis. Journal of Orthopaedic Research, 2017, 35, 424-439.	2.3	53
62	Macrophage polarization contributes to local inflammation and structural change in the multifidus muscle after intervertebral disc injury. European Spine Journal, 2018, 27, 1744-1756.	2.2	53
63	Detection of aggrecanase- and MMP-generated catabolic neoepitopes in the rat iodoacetate model of cartilage degeneration. Osteoarthritis and Cartilage, 2004, 12, 720-728.	1.3	51
64	Spatial and Temporal Localization of Transforming Growth Factor-β, Fibroblast Growth Factor-2, and Osteonectin, and Identification of Cells Expressing α-Smooth Muscle Actin in the Injured Anulus Fibrosus. Spine, 2002, 27, 1756-1764.	2.0	49
65	Matrix Metalloproteinases Are Not Essential for Aggrecan Turnover during Normal Skeletal Growth and Development. Molecular and Cellular Biology, 2005, 25, 3388-3399.	2.3	48
66	Identification of the skeletal progenitor cells forming osteophytes in osteoarthritis. Annals of the Rheumatic Diseases, 2020, 79, 1625-1634.	0.9	48
67	Comparison of gait and pathology outcomes of three meniscal procedures for induction of knee osteoarthritis in sheep. Osteoarthritis and Cartilage, 2013, 21, 226-236.	1.3	46
68	Ablation of Perlecan Domain 1 Heparan Sulfate Reduces Progressive Cartilage Degradation, Synovitis, and Osteophyte Size in a Preclinical Model of Posttraumatic Osteoarthritis. Arthritis and Rheumatology, 2016, 68, 868-879.	5.6	46
69	Activation of cartilage matrix metalloproteinases by activated protein C. Arthritis and Rheumatism, 2009, 60, 780-791.	6.7	44
70	¹ H NMR Spectroscopy of Serum Reveals Unique Metabolic Fingerprints Associated with Subtypes of Surgically Induced Osteoarthritis in Sheep. Journal of Proteome Research, 2012, 11, 4261-4268.	3.7	44
71	Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development. Histochemistry and Cell Biology, 2012, 138, 461-475.	1.7	42
72	Low molecular weight isoforms of the aggrecanases are responsible for the cytokineâ€induced proteolysis of aggrecan in a porcine chondrocyte culture system. Arthritis and Rheumatism, 2007, 56, 3010-3019.	6.7	39

#	Article	IF	CITATIONS
73	Calcification in the ovine intervertebral disc: a model of hydroxyapatite deposition disease. European Spine Journal, 2009, 18, 479-489.	2.2	39
74	The effect of strenuous versus moderate exercise on the metabolism of proteoglycans in articular cartilage from different weight-bearing regions of the equine third carpal bone. Osteoarthritis and Cartilage, 1997, 5, 161-172.	1.3	38
75	Topographical variation in the distributions of versican, aggrecan and perlecan in the foetal human spine reflects their diverse functional roles in spinal development. Histochemistry and Cell Biology, 2009, 132, 491-503.	1.7	38
76	A Histopathological Scheme for the Quantitative Scoring of Intervertebral Disc Degeneration and the Therapeutic Utility of Adult Mesenchymal Stem Cells for Intervertebral Disc Regeneration. International Journal of Molecular Sciences, 2017, 18, 1049.	4.1	38
77	Considerations for the design and execution of protocols for animal research and treatment to improve reproducibility and standardization: "DEPART well-prepared and ARRIVE safelyâ€. Osteoarthritis and Cartilage, 2017, 25, 354-363.	1.3	37
78	Catabolism of aggrecan, decorin and biglycan in tendon. Biochemical Journal, 2000, 350, 181.	3.7	36
79	Cytokine induced metalloproteinase expression and activity does not correlate with focal susceptibility of articular cartilage to degeneration. Osteoarthritis and Cartilage, 2005, 13, 162-170.	1.3	35
80	Use of FGF-2 and FGF-18 to direct bone marrow stromal stem cells to chondrogenic and osteogenic lineages. Future Science OA, 2016, 2, FSO142.	1.9	34
81	Effect of Manuka honey gel on the transforming growth factor β1 and β3 concentrations, bacterial counts and histomorphology of contaminated fullâ€thickness skin wounds in equine distal limbs. Australian Veterinary Journal, 2016, 94, 27-34.	1.1	34
82	Monocytes, Macrophages, and Their Potential Niches in Synovial Joints – Therapeutic Targets in Post-Traumatic Osteoarthritis?. Frontiers in Immunology, 2021, 12, 763702.	4.8	34
83	Utility of circulating serum miRNAs as biomarkers of early cartilage degeneration in animal models of post-traumatic osteoarthritis and inflammatory arthritis. Osteoarthritis and Cartilage, 2017, 25, 426-434.	1.3	32
84	Neoepitopes as biomarkers of cartilage catabolism. Inflammation Research, 2003, 52, 277-282.	4.0	31
85	Anti-IgD antibody attenuates collagen-induced arthritis by selectively depleting mature B-cells and promoting immune tolerance. Journal of Autoimmunity, 2010, 35, 86-97.	6.5	31
86	The relationship between synovial inflammation, structural pathology, and pain in post-traumatic osteoarthritis: differential effect of stem cell and hyaluronan treatment. Arthritis Research and Therapy, 2020, 22, 29.	3.5	31
87	Hyaluronan oligosaccharides stimulate matrix metalloproteinase and anabolic gene expression <i>in vitro</i> by intervertebral disc cells and annular repair <i>in vivo</i> . Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e216-e226.	2.7	28
88	Molecular cloning and sequence analysis of the aggrecan interglobular domain from porcine, equine, bovine and ovine cartilage: Comparison of proteinase-susceptible regions and sites of keratan sulfate substitution. Matrix Biology, 1998, 16, 507-511.	3.6	27
89	A hexadecylamide derivative of hyaluronan (HYMOVIS®) has superior beneficial effects on human osteoarthritic chondrocytes and synoviocytes than unmodified hyaluronan. Journal of Inflammation, 2013, 10, 26.	3.4	27
90	The role of proteoglycans in the nanoindentation creep behavior of human dentin. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 55, 264-270.	3.1	27

#	Article	IF	CITATIONS
91	Extracellular Vesicles from Mesenchymal Stromal Cells for the Treatment of Inflammation-Related Conditions. International Journal of Molecular Sciences, 2021, 22, 3023.	4.1	27
92	Cell Clusters Are Indicative of Stem Cell Activity in the Degenerate Intervertebral Disc: Can Their Properties Be Manipulated to Improve Intrinsic Repair of the Disc?. Stem Cells and Development, 2018, 27, 147-165.	2.1	26
93	The biology of meniscal pathology in osteoarthritis and its contribution to joint disease: beyond simple mechanics. Connective Tissue Research, 2017, 58, 282-294.	2.3	25
94	Mesenchymal Stem Cell Treatment of Intervertebral Disc Lesion Prevents Fatty Infiltration and Fibrosis of the Multifidus Muscle, but not Cytokine and Muscle Fiber Changes. Spine, 2016, 41, 1208-1217.	2.0	24
95	Comprehensive Expression Analysis of microRNAs and mRNAs in Synovial Tissue from a Mouse Model of Early Post-Traumatic Osteoarthritis. Scientific Reports, 2017, 7, 17701.	3.3	24
96	Efficacy of administered mesenchymal stem cells in the initiation and coâ€ordination of repair processes by resident disc cells in an ovine (<scp><i>Ovis aries</i></scp>) large destabilizing lesion model of experimental disc degeneration. JOR Spine, 2018, 1, e1037.	3.2	24
97	OA foundations – experimental models of osteoarthritis. Osteoarthritis and Cartilage, 2022, 30, 357-380.	1.3	24
98	Detection of Aggregatable Proteoglycan Populations by Affinity Blotting Using Biotinylated Hyaluronan. Analytical Biochemistry, 1998, 256, 149-157.	2.4	23
99	Changes in gait after bilateral meniscectomy in sheep: effect of two hyaluronan preparations. Journal of Orthopaedic Science, 2008, 13, 514-523.	1.1	23
100	The CS Sulfation Motifs 4C3, 7D4, 3B3[â^']; and Perlecan Identify Stem Cell Populations and Their Niches, Activated Progenitor Cells and Transitional Areas of Tissue Development in the Fetal Human Elbow. Stem Cells and Development, 2016, 25, 836-847.	2.1	23
101	Catabolism of Fibromodulin in Developmental Rudiment and Pathologic Articular Cartilage Demonstrates Novel Roles for MMP-13 and ADAMTS-4 in C-terminal Processing of SLRPs. International Journal of Molecular Sciences, 2019, 20, 579.	4.1	23
102	A retrospective study of head fractures in 21 horses. Australian Veterinary Journal, 1985, 62, 89-91.	1.1	22
103	Modulation of endochondral ossification by MEK inhibitors PD0325901 and AZD6244 (Selumetinib). Bone, 2014, 59, 151-161.	2.9	22
104	Chondroitin sulphate glycosaminoglycans contribute to widespread inferior biomechanics in tendon after focal injury. Journal of Biomechanics, 2016, 49, 2694-2701.	2.1	22
105	Caecal overload and rupture in the horse. Australian Veterinary Journal, 1987, 64, 85-86.	1.1	21
106	The use of Histochoiceâ,,¢Â® for histological examination of articular and growth plate cartilages, intervertebral disc and meniscus. Biotechnic and Histochemistry, 2008, 83, 47-53.	1.3	21
107	The ovine newborn and human foetal intervertebral disc contain perlecan and aggrecan variably substituted with native 7D4 CS sulphation motif: spatiotemporal immunolocalisation and co-distribution with Notch-1 in the human foetal disc. Glycoconjugate Journal, 2013, 30, 717-725.	2.7	21
108	Cartilage MicroRNA Dysregulation During the Onset and Progression of Mouse Osteoarthritis Is Independent of Aggrecanolysis and Overlaps With Candidates From Endâ€Stage Human Disease. Arthritis and Rheumatology, 2018, 70, 383-395.	5.6	21

#	Article	IF	CITATIONS
109	OATargets: a knowledge base of genes associated with osteoarthritis joint damage in animals. Annals of the Rheumatic Diseases, 2021, 80, 376-383.	0.9	21
110	Neoepitope Antibodies Against MMP-Cleaved and Aggrecanase-Cleaved Aggrecan. Methods in Molecular Biology, 2010, 622, 305-340.	0.9	21
111	A Detailed Microscopic Examination of Alterations in Normal Anular Structure Induced by Mechanical Destabilization in an Ovine Model of Disc Degeneration. Spine, 2010, 35, 1965-1973.	2.0	20
112	Dynamic Biomechanics Correlate with Histopathology in Human Tibial Cartilage. Clinical Orthopaedics and Related Research, 2007, 462, 212-220.	1.5	19
113	Stem cell-directed therapies for osteoarthritis: The promise and the practice. Stem Cells, 2020, 38, 477-486.	3.2	19
114	Maintaining mRNA Integrity during Decalcification of Mineralized Tissues. PLoS ONE, 2013, 8, e58154.	2.5	19
115	Treatment of Experimentally Induced Osteoarthritis in Horses Using an Intravenous Combination of Sodium Pentosan Polysulfate, Nâ€Acetyl Glucosamine, and Sodium Hyaluronan. Veterinary Surgery, 2014, 43, 612-622.	1.0	18
116	Focal Experimental Injury Leads to Widespread Gene Expression and Histologic Changes in Equine Flexor Tendons. PLoS ONE, 2015, 10, e0122220.	2.5	18
117	Tumours of the paranasal sinuses in 16 horses. Australian Veterinary Journal, 1988, 65, 86-88.	1.1	17
118	Products resulting from cleavage of the interglobular domain of aggrecan in samples of synovial fluid collected from dogs with early- and late-stage osteoarthritis. American Journal of Veterinary Research, 2005, 66, 1679-1685.	0.6	17
119	Comparative immunolocalisation of perlecan, heparan sulphate, fibroblast growth factor-18, and fibroblast growth factor receptor-3 and their prospective roles in chondrogenic and osteogenic development of the human foetal spine. European Spine Journal, 2013, 22, 1774-1784.	2.2	17
120	Advances in the understanding of tendinopathies: <scp>A</scp> report on the <scp>S</scp> econd <scp>H</scp> avemeyer <scp>W</scp> orkshop on equine tendon disease. Equine Veterinary Journal, 2014, 46, 4-9.	1.7	17
121	Osteoarthritis Pathophysiology. Clinics in Geriatric Medicine, 2022, 38, 193-219.	2.6	17
122	Joint loads resulting in ACL rupture: Effects of age, sex, and body mass on injury load and mode of failure in a mouse model. Journal of Orthopaedic Research, 2017, 35, 1754-1763.	2.3	16
123	Modulating chondrocyte hypertrophy in growth plate and osteoarthritic cartilage. Journal of Musculoskeletal Neuronal Interactions, 2008, 8, 308-10.	0.1	16
124	Differential patterns of pathology in and interaction between joint tissues in long-term osteoarthritis with different initiating causes: phenotype matters. Osteoarthritis and Cartilage, 2020, 28, 953-965.	1.3	15
125	Male–Female Differences in the Effects of Age on Performance Measures Recorded for 23 Hours in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 2141-2146.	3.6	15
126	Recombinant equine growth hormone administration: effects on synovial fluid biomarkers and cartilage metabolism in horses. Equine Veterinary Journal, 2010, 35, 302-307.	1.7	14

#	Article	IF	CITATIONS
127	Assessment for varicella zoster virus in patients newly suspected of having giant cell arteritis. Rheumatology, 2020, 59, 1992-1996.	1.9	14
128	Activated protein C mediates a healing phenotype in cultured tenocytes. Journal of Cellular and Molecular Medicine, 2009, 13, 749-757.	3.6	13
129	Immunolocalization and distribution of proteoglycans in carious dentine. Australian Dental Journal, 2016, 61, 288-297.	1.5	13
130	Cellular, matrix, and mechano-biological differences in load-bearing versus positional tendons throughout development and aging: a narrative review. Connective Tissue Research, 2018, 59, 483-494.	2.3	13
131	Spatiotemporal variations in gene expression, histology and biomechanics in an ovine model of tendinopathy. PLoS ONE, 2017, 12, e0185282.	2.5	13
132	Intra-articular Treatment of Osteoarthritis with Diclofenac-Conjugated Polymer Reduces Inflammation and Pain. ACS Applied Bio Materials, 2019, 2, 2822-2832.	4.6	12
133	Disruption of glucocorticoid signalling in osteoblasts attenuates age-related surgically induced osteoarthritis. Osteoarthritis and Cartilage, 2019, 27, 1518-1525.	1.3	12
134	Developing strategic priorities in osteoarthritis research: Proceedings and recommendations arising from the 2017 Australian Osteoarthritis Summit. BMC Musculoskeletal Disorders, 2019, 20, 74.	1.9	12
135	Sex- and injury-based differences in knee biomechanics in mouse models of post-traumatic osteoarthritis. Journal of Biomechanics, 2021, 114, 110152.	2.1	12
136	Metformin as a potential disease-modifying drug in osteoarthritis: a systematic review of pre-clinical and human studies. Osteoarthritis and Cartilage, 2022, 30, 1434-1442.	1.3	12
137	The interaction of canonical bone morphogenetic protein- and Wnt-signaling pathways may play an important role in regulating cartilage degradation in osteoarthritis. Arthritis Research and Therapy, 2012, 14, 119.	3.5	11
138	Endothelial protein C receptor-associated invasiveness of rheumatoid synovial fibroblasts is likely driven by group V secretory phospholipase A2. Arthritis Research and Therapy, 2014, 16, R44.	3.5	11
139	Long-term Effect of a Single Subcritical Knee Injury: Increasing the Risk of Anterior Cruciate Ligament Rupture and Osteoarthritis. American Journal of Sports Medicine, 2021, 49, 391-403.	4.2	11
140	Preclinical randomized controlled trial of bilateral discectomy versus bilateral discopexy in Black Merino sheep temporomandibular joint: TEMPOJIMS – Phase 1- histologic, imaging and body weight results. Journal of Cranio-Maxillo-Facial Surgery, 2018, 46, 688-696.	1.7	10
141	Bioengineered Temporomandibular Joint Disk Implants: Study Protocol for a Two-Phase Exploratory Randomized Preclinical Pilot Trial in 18 Black Merino Sheep (TEMPOJIMS). JMIR Research Protocols, 2017, 6, e37.	1.0	10
142	Efficacy and cost-effectiveness of Stem Cell injections for symptomatic relief and strUctural improvement in people with Tibiofemoral knee OsteoaRthritis: protocol for a randomised placebo-controlled trial (the SCUlpTOR trial). BMJ Open, 2021, 11, e056382.	1.9	10
143	Altered stress induced by partial transection of the infraspinatus tendon leads to perlecan (HSPG2) accumulation in an ovine model of tendinopathy. Tissue and Cell, 2013, 45, 77-82.	2.2	9
144	Effects of tendon injury on uninjured regional tendons in the distal limb: An in-vivo study using an ovine tendinopathy model. PLoS ONE, 2019, 14, e0215830.	2.5	9

#	Article	IF	CITATIONS
145	The great debate: Should Osteoarthritis Research Focus on "Mice―or "Men�. Osteoarthritis and Cartilage, 2016, 24, 4-8.	1.3	8
146	Functionally distinct tendons have different biomechanical, biochemical and histological responses to in vitro unloading. Journal of Biomechanics, 2019, 95, 109321.	2.1	8
147	Elevated hypertrophy, growth plate maturation, glycosaminoglycan deposition, and exostosis formation in the <i>Hspg2</i> exon 3 null mouse intervertebral disc. Biochemical Journal, 2019, 476, 225-243.	3.7	8
148	Pathology-pain relationships in different osteoarthritis animal model phenotypes: it matters what you measure, when you measure, and how you got there. Osteoarthritis and Cartilage, 2021, 29, 1448-1461.	1.3	8
149	Muscle spindles of the multifidus muscle undergo structural change after intervertebral disc degeneration. European Spine Journal, 2022, 31, 1879-1888.	2.2	8
150	Interleukin-1α induces focal degradation of biglycan and tissue degeneration in an in-vitro ovine meniscal model. Experimental and Molecular Pathology, 2016, 101, 214-220.	2.1	7
151	Achilles and tail tendons of perlecan exon 3 null heparan sulphate deficient mice display surprising improvement in tendon tensile properties and altered collagen fibril organisation compared to C57BL/6 wild type mice. PeerJ, 2018, 6, e5120.	2.0	7
152	Diurnal effects of polypharmacy with high drug burden index on physical activities over 23Åh differ with age and sex. Scientific Reports, 2022, 12, 2168.	3.3	7
153	Identification of TGFÎ2-related genes regulated in murine osteoarthritis and chondrocyte hypertrophy by comparison of multiple microarray datasets. Bone, 2018, 116, 67-77.	2.9	6
154	Proteoglycan and Collagen Degradation in Osteoarthritis. , 2017, , 41-61.		6
155	Flow Cytometry Analysis of Immune Cell Subsets within the Murine Spleen, Bone Marrow, Lymph Nodes and Synovial Tissue in an Osteoarthritis Model. Journal of Visualized Experiments, 2020, , .	0.3	6
156	Immunolocalization of lymphatic vessels in human fetal knee joint tissues. Connective Tissue Research, 2010, 51, 289-305.	2.3	5
157	Prevention and treatment of intervertebral disc degeneration with bone marrow derived stem (stromal) cells $\hat{a} \in $ an in vivo study in sheep. Osteoarthritis and Cartilage, 2014, 22, S28-S29.	1.3	4
158	Adding insult to injury: synergistic effect of combining risk-factors in models of post-traumatic osteoarthritis. Osteoarthritis and Cartilage, 2019, 27, 1731-1734.	1.3	4
159	Limited utility of novel serological biomarkers in patients newly suspected of having giant cell arteritis. International Journal of Rheumatic Diseases, 2021, 24, 781-788.	1.9	4
160	Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. Journal of Clinical Investigation, 2008, 118, 3812-3812.	8.2	4
161	Fungal granuloma in a horse. Australian Veterinary Journal, 1984, 61, 298-300.	1.1	3
162	Characterisation of pain-related behaviours in association with joint pathology in an 8-week antigen-induced arthritis model. Osteoarthritis and Cartilage, 2014, 22, S36-S37.	1.3	3

#	Article	IF	CITATIONS
163	The recent paper "Multimodal imaging demonstrates concomitant changes in bone and cartilage after destabilization of the medial meniscus and increased joint laxity― Osteoarthritis and Cartilage, 2011, 19, 1076-1077.	1.3	2
164	Aggrecanases 1 and 2. , 2004, , 740-746.		2
165	Exploring translational gaps between basic scientists, clinical researchers, clinicians, and consumers: Proceedings and recommendations arising from the 2020 mine the gap online workshop. Osteoarthritis and Cartilage Open, 2021, 3, 100163.	2.0	1
166	Proteoglycan Composition and Biosynthesis in Superficial and Deep Digital Flexor Tendons of Standardbred Horses. Veterinary and Comparative Orthopaedics and Traumatology, 1999, 12, 166-172.	0.5	1
167	Prevention and early treatment, a future focus for OA research. Osteoarthritis and Cartilage, 2021, 29, 1627-1629.	1.3	1
168	Orthobiologics in Orthopaedic applications: A Report from the TMI Havemeyer Meeting on Orthobiologics. Journal of Cartilage & Joint Preservation, 2022, , 100055.	0.5	1
169	Effects of hyaluronans of different molecular weight on cartilage and synovial changes in an ovine model of osteoarthritis. Immunology and Cell Biology, 1996, 74, a11-a11.	2.3	Ο
170	Distinct pain mechanisms in two different models of arthritis. Osteoarthritis and Cartilage, 2012, 20, S252-S253.	1.3	0
171	S100A8 and S100A9 act as â€~primers' of a catabolic response in chondrocytes but additional signals are required to activate cartilage degradation. Osteoarthritis and Cartilage, 2012, 20, S30-S31.	1.3	0
172	Depletion of perlecan domain I heparan sulfate regulates fibroblast growth factor activity in cartilage and protects against cartilage loss and osteophyte development in post-traumatic osteoarthritis. Osteoarthritis and Cartilage, 2012, 20, S49.	1.3	0
173	Interactions between S100A8 and DDR2 mechanisms in cartilage degradation in osteoarthritis. Osteoarthritis and Cartilage, 2013, 21, S244.	1.3	0
174	Bioactivity in an aggrecan 32mer fragment is mediated via toll-like receptors. Osteoarthritis and Cartilage, 2014, 22, S12.	1.3	0
175	Generation of a miR-26b stem-loop knockout human iPSC line, MCRIi019-A-1, using CRISPR/Cas9 editing. Stem Cell Research, 2021, 50, 102118.	0.7	Ο
176	An international, multi-disciplinary Delphi study regarding statements for the definition of spinal osteoarthritis. Osteoarthritis and Cartilage, 2021, 29, S270-S271.	1.3	0
177	On the Horizon From the ORS. Journal of the American Academy of Orthopaedic Surgeons, The, 2010, 18, 243-246.	2.5	0
178	OS6-3 RELATIONSHIP BETWEEN BIOMECHANICS AND PATHOLOGY IN A MOUSE KNEE INJURY MODEL(OS6:) TJ I	ETQq0 0 0 0.0) rgBT /Overlo 0

Conference on Biomechanics Emerging Science and Technology in Biomechanics, 2015, 2015.8, 99.