Theresia E B Stradal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2563576/publications.pdf

Version: 2024-02-01

90 papers 8,369 citations

45 h-index 49909 87 g-index

95 all docs 95 docs citations 95 times ranked 9209 citing authors

#	Article	IF	CITATIONS
1	WASP stings into matrix to lead immune cell migration. Journal of Cell Biology, 2022, 221, .	5.2	2
2	Parallel kinase pathways stimulate actin polymerization at depolarized mitochondria. Current Biology, 2022, 32, 1577-1592.e8.	3.9	11
3	SMER28 Attenuates PI3K/mTOR Signaling by Direct Inhibition of PI3K p110 Delta. Cells, 2022, 11, 1648.	4.1	7
4	Antiproliferative and Cytotoxic Cytochalasins from Sparticola triseptata Inhibit Actin Polymerization and Aggregation. Journal of Fungi (Basel, Switzerland), 2022, 8, 560.	3.5	5
5	RhoG and Cdc42 can contribute to Rac-dependent lamellipodia formation through WAVE regulatory complex-binding. Small GTPases, 2021, 12, 122-132.	1.6	12
6	Crystal structure of bacterial cytotoxic necrotizing factor CNF _Y reveals molecular building blocks for intoxication. EMBO Journal, 2021, 40, e105202.	7.8	14
7	Dendritic cell actin dynamics control contact duration and priming efficiency at the immunological synapse. Journal of Cell Biology, 2021, 220, .	5.2	25
8	Induced Arp2/3 Complex Depletion Increases FMNL2/3 Formin Expression and Filopodia Formation. Frontiers in Cell and Developmental Biology, 2021, 9, 634708.	3.7	32
9	WAVE regulatory complex. Current Biology, 2021, 31, R512-R517.	3.9	60
10	Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion. Current Biology, 2021, 31, 2051-2064.e8.	3.9	17
11	Diversely Functionalised Cytochalasins through Mutasynthesis and Semiâ€Synthesis. Chemistry - A European Journal, 2020, 26, 13578-13583.	3.3	13
12	Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation. Journal of Cell Science, 2020, 133, .	2.0	28
13	The cytoskeletal regulator HEM1 governs B cell development and prevents autoimmunity. Science Immunology, 2020, 5, .	11.9	37
14	Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion. Nature Communications, 2020, 11, 2013.	12.8	68
15	New Peptaibiotics and a Cyclodepsipeptide from Ijuhya vitellina: Isolation, Identification, Cytotoxic and Nematicidal Activities. Antibiotics, 2020, 9, 132.	3.7	12
16	Host-induced spermidine production in motile Pseudomonas aeruginosa triggers phagocytic uptake. ELife, 2020, 9, .	6.0	6
17	xCELLanalyzer: A Framework for the Analysis of Cellular Impedance Measurements for Mode of Action Discovery. SLAS Discovery, 2019, 24, 213-223.	2.7	3
18	Spatiotemporal control of FlgZ activity impacts <i>Pseudomonas aeruginosa</i> flagellar motility. Molecular Microbiology, 2019, 111, 1544-1557.	2.5	12

#	Article	IF	Citations
19	The Effect of Cytochalasans on the Actin Cytoskeleton of Eukaryotic Cells and Preliminary Structure–Activity Relationships. Biomolecules, 2019, 9, 73.	4.0	29
20	Regulation of MRTF-A by JMY via a nucleation-independent mechanism. Cell Communication and Signaling, 2018, 16, 86.	6.5	2
21	Visualization of translocons in Yersinia type III protein secretion machines during host cell infection. PLoS Pathogens, 2018, 14, e1007527.	4.7	29
22	Actin dynamics in host–pathogen interaction. FEBS Letters, 2018, 592, 3658-3669.	2.8	54
23	Preussilides A–F, Bicyclic Polyketides from the Endophytic FungusPreussia similiswith Antiproliferative Activity. Journal of Natural Products, 2017, 80, 1531-1540.	3.0	32
24	FMNL formins boost lamellipodial force generation. Nature Communications, 2017, 8, 14832.	12.8	112
25	Flagellin phase-dependent swimming on epithelial cell surfaces contributes to productive <i>Salmonella</i> gut colonisation. Cellular Microbiology, 2017, 19, e12739.	2.1	48
26	Differential functions of WAVE regulatory complex subunits in the regulation of actin-driven processes. European Journal of Cell Biology, 2017, 96, 715-727.	3.6	28
27	Kindlin-2 recruits paxillin and Arp2/3 to promote membrane protrusions during initial cell spreading. Journal of Cell Biology, 2017, 216, 3785-3798.	5.2	94
28	FMNL2 and -3 regulate Golgi architecture and anterograde transport downstream of Cdc42. Scientific Reports, 2017, 7, 9791.	3.3	33
29	Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nature Communications, 2016, 7, 10997.	12.8	282
30	Signalling Pathways Controlling Cellular Actin Organization. Handbook of Experimental Pharmacology, 2016, 235, 153-178.	1.8	17
31	Diversified actin protrusions promote environmental exploration but are dispensable for locomotion ofÂleukocytes. Nature Cell Biology, 2016, 18, 1253-1259.	10.3	150
32	Type III Secreted Virulence Factors Manipulating Signaling to Actin Dynamics. Current Topics in Microbiology and Immunology, 2016, 399, 175-199.	1.1	11
33	How distinct Arp2/3 complex variants regulate actin filament assembly. Nature Cell Biology, 2016, 18, 1-3.	10.3	63
34	JMY is involved in anterograde vesicle trafficking from the trans-Golgi network. European Journal of Cell Biology, 2014, 93, 194-204.	3.6	35
35	The EHEC-host interactome reveals novel targets for the translocated intimin receptor. Scientific Reports, 2014, 4, 7531.	3.3	35
36	Arp2/3 complex is essential for actin network treadmilling as well as for targeting of capping protein and cofilin. Molecular Biology of the Cell, 2013, 24, 2861-2875.	2.1	68

#	Article	IF	CITATIONS
37	Rac function is critical for cell migration but not required for spreading and focal adhesion formation. Journal of Cell Science, 2013, 126, 4572-88.	2.0	139
38	A novel contractility pathway operating in Salmonella invasion. Virulence, 2012, 3, 81-86.	4.4	10
39	FMNL2 Drives Actin-Based Protrusion and Migration Downstream of Cdc42. Current Biology, 2012, 22, 1005-1012.	3.9	184
40	Activation of a RhoA/Myosin II-Dependent but Arp2/3 Complex-Independent Pathway Facilitates Salmonella Invasion. Cell Host and Microbe, 2011, 9, 273-285.	11.0	69
41	Microtubules as Platforms for Assaying Actin Polymerization In Vivo. PLoS ONE, 2011, 6, e19931.	2.5	10
42	Molecular mechanism of Ena/VASP-mediated actin-filament elongation. EMBO Journal, 2011, 30, 456-467.	7.8	143
43	Structural Basis for Complex Formation between Human IRSp53 and the Translocated Intimin Receptor Tir of Enterohemorrhagic E. coli. Structure, 2011, 19, 1294-1306.	3.3	30
44	Actin dynamics and turnover in cell motility. Current Opinion in Cell Biology, 2011, 23, 569-578.	5.4	170
45	Essential role for Abi1 in embryonic survival and WAVE2 complex integrity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7022-7027.	7.1	62
46	Theoretical Model for Cellular Shapes Driven by Protrusive and Adhesive Forces. PLoS Computational Biology, 2011, 7, e1001127.	3.2	50
47	High-Resolution X-Ray Structure of the Trimeric Scar/WAVE-Complex Precursor Brk1. PLoS ONE, 2011, 6, e21327.	2.5	10
48	Molecular dissection of <i>Salmonella </i> -induced membrane ruffling versus invasion. Cellular Microbiology, 2010, 12, 84-98.	2.1	52
49	Structure of Shigella IpgB2 in Complex with Human RhoA. Journal of Biological Chemistry, 2010, 285, 17197-17208.	3.4	47
50	Rac1 Regulates Neuronal Polarization through the WAVE Complex. Journal of Neuroscience, 2010, 30, 6930-6943.	3.6	155
51	Src Homology 2-Domain Containing Leukocyte-Specific Phosphoprotein of 76 kDa Is Mandatory for TCR-Mediated Inside-Out Signaling, but Dispensable for CXCR4-Mediated LFA-1 Activation, Adhesion, and Migration of T Cells. Journal of Immunology, 2009, 183, 5756-5767.	0.8	45
52	Requirements for F-BAR Proteins TOCA-1 and TOCA-2 in Actin Dynamics and Membrane Trafficking during Caenorhabditis elegans Oocyte Growth and Embryonic Epidermal Morphogenesis. PLoS Genetics, 2009, 5, e1000675.	3.5	58
53	Cortactin Promotes Migration and Platelet-derived Growth Factor-induced Actin Reorganization by Signaling to Rho-GTPases. Molecular Biology of the Cell, 2009, 20, 3209-3223.	2.1	102
54	Filopodia: Complex models for simple rods. International Journal of Biochemistry and Cell Biology, 2009, 41, 1656-1664.	2.8	151

#	Article	IF	CITATIONS
55	IRSp53 Links the Enterohemorrhagic E. coli Effectors Tir and EspFU for Actin Pedestal Formation. Cell Host and Microbe, 2009, 5, 244-258.	11.0	91
56	Poxviruses Taking a Ride on Actin: New Users of Known Hardware. Cell Host and Microbe, 2009, 6, 497-499.	11.0	8
57	Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO Journal, 2008, 27, 982-992.	7.8	271
58	Filopodia formation induced by active mDia2/Drf3. Journal of Microscopy, 2008, 231, 506-517.	1.8	89
59	Large-Scale Analysis of Protein–Protein Interactions Using Cellulose-Bound Peptide Arrays. Advances in Biochemical Engineering/Biotechnology, 2008, 110, 115-152.	1.1	33
60	Free Brick1 Is a Trimeric Precursor in the Assembly of a Functional Wave Complex. PLoS ONE, 2008, 3, e2462.	2.5	63
61	c-Met is essential for wound healing in the skin. Journal of Cell Biology, 2007, 177, 151-162.	5.2	275
62	RIAM Links the ADAP/SKAP-55 Signaling Module to Rap1, Facilitating T-Cell-Receptor-Mediated Integrin Activation. Molecular and Cellular Biology, 2007, 27, 4070-4081.	2.3	122
63	Cdc42 and Phosphoinositide 3-Kinase Drive Rac-Mediated Actin Polymerization Downstream of c-Met in Distinct and Common Pathways. Molecular and Cellular Biology, 2007, 27, 6615-6628.	2.3	47
64	Featuring…Theresia Stradal. FEBS Letters, 2006, 580, 2810-2810.	2.8	0
65	Molecular Regulation of Cytoskeletal Rearrangements During TÂCell Signalling. , 2006, 43, 219-244.		7
66	Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8–IRSp53 complex. Nature Cell Biology, 2006, 8, 1337-1347.	10.3	230
67	Protein complexes regulating Arp2/3-mediated actin assembly. Current Opinion in Cell Biology, 2006, 18, 4-10.	5.4	230
68	Filopodia Formation in the Absence of Functional WAVE- and Arp2/3-Complexes. Molecular Biology of the Cell, 2006, 17, 2581-2591.	2.1	212
69	The Phosphotyrosine Peptide Binding Specificity of Nck1 and Nck2 Src Homology 2 Domains. Journal of Biological Chemistry, 2006, 281, 18236-18245.	3.4	87
70	The bundling activity of vasodilator-stimulated phosphoprotein is required for filopodium formation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7694-7699.	7.1	140
71	Host-Pathogen Interactions and Cell Motility: Learning from Bacteria. , 2005, , 205-236.		0
72	Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Nature Cell Biology, 2005, 7, 353-364.	10.3	153

#	Article	IF	CITATIONS
73	Abi1 regulates the activity of N-WASP and WAVE in distinct actin-based processes. Nature Cell Biology, 2005, 7, 969-976.	10.3	201
74	N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits. Journal of Cell Science, 2005, 118, 3103-3115.	2.0	155
75	Vinculin acts as a sensor in lipid regulation of adhesion-site turnover. Journal of Cell Science, 2005, 118, 1461-1472.	2.0	108
76	Bacteria-Host-Cell Interactions at the Plasma Membrane: Stories on Actin Cytoskeleton Subversion. Developmental Cell, 2005, 9, 3-17.	7.0	108
77	PREL1 provides a link from Ras signalling to the actin cytoskeleton via Ena/VASP proteins. FEBS Letters, 2005, 579, 455-463.	2.8	58
78	Xin repeats define a novel actin-binding motif. Journal of Cell Science, 2004, 117, 5257-5268.	2.0	83
79	Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nature Cell Biology, 2004, 6, 319-327.	10.3	364
80	Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nature Cell Biology, 2004, 6, 1180-1188.	10.3	197
81	Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO Journal, 2004, 23, 749-759.	7.8	359
82	Regulation of actin dynamics by WASP and WAVE family proteins. Trends in Cell Biology, 2004, 14, 303-311.	7.9	265
83	Pathogen-induced actin filament rearrangement in infectious diseases. Journal of Pathology, 2004, 204, 396-406.	4.5	41
84	Podosome formation in cultured A7r5 vascular smooth muscle cells requires Arp2/3-dependent de-novo actin polymerization at discrete microdomains. Journal of Cell Science, 2003, 116, 4915-4924.	2.0	130
85	The lamellipodium: where motility begins. Trends in Cell Biology, 2002, 12, 112-120.	7.9	809
86	Phosphatidylinositol 4,5-Biphosphate (PIP2)-induced Vesicle Movement Depends on N-WASP and Involves Nck, WIP, and Grb2. Journal of Biological Chemistry, 2002, 277, 37771-37776.	3.4	133
87	The Abl interactor proteins localize to sites of actin polymerization at the tips of lamellipodia and filopodia. Current Biology, 2001, 11, 891-895.	3.9	138
88	Mapping the Zinc Ligands of S100A2 by Site-directed Mutagenesis. Journal of Biological Chemistry, 2000, 275, 13219-13227.	3.4	24
89	Ca2+-dependent Association of S100A6 (Calcyclin) with the Plasma Membrane and the Nuclear Envelope. Journal of Biological Chemistry, 1999, 274, 31593-31596.	3.4	38
90	CH domains revisited. FEBS Letters, 1998, 431, 134-137.	2.8	118