
Johanna M Nystedt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2562900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chondrogenic differentiation of human bone marrowâ€derived mesenchymal stromal cells in a threeâ€dimensional environment. Journal of Cellular Physiology, 2020, 235, 3497-3507.	4.1	9
2	Single-cell analysis of human adipose tissue identifies depot- and disease-specific cell types. Nature Metabolism, 2020, 2, 97-109.	11.9	272
3	The Utilization of Freezing Steps in Mesenchymal Stromal Cell (MSC) Manufacturing: Potential Impact on Quality and Cell Functionality Attributes. Frontiers in Immunology, 2019, 10, 1627.	4.8	38
4	HLA-DR expression in clinical-grade bone marrow-derived multipotent mesenchymal stromal cells: a two-site study. Stem Cell Research and Therapy, 2019, 10, 164.	5.5	38
5	The use of unlicensed bone marrow–derived platelet lysate–expanded mesenchymal stromal cells in colitis: a pre-clinical study. Cytotherapy, 2019, 21, 175-188.	0.7	10
6	Immunomonitoring of MSC-Treated GvHD Patients Reveals Only Moderate Potential for Response Prediction but Indicates Treatment Safety. Molecular Therapy - Methods and Clinical Development, 2018, 9, 109-118.	4.1	22
7	Recombinant human type II collagen hydrogel provides a xeno-free 3D micro-environment for chondrogenesis of human bone marrow-derived mesenchymal stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 843-854.	2.7	14
8	Clumping and Viability of Bone Marrow Derived Mesenchymal Stromal Cells under Different Preparation Procedures: A Flow Cytometry-Based In Vitro Study. Stem Cells International, 2016, 2016, 1-8.	2.5	20
9	Expression of neural cell adhesion molecule and polysialic acid in human bone marrow-derived mesenchymal stromal cells. Stem Cell Research and Therapy, 2016, 7, 113.	5.5	20
10	A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells. Cytotechnology, 2016, 68, 891-906.	1.6	46
11	Rational Autologous Cell Sources For Therapy of Heart Failure - Vehicles and Targets For Gene and RNA Therapies. Current Gene Therapy, 2016, 16, 21-33.	2.0	9
12	Differential Clearance of Rat and Human Bone Marrow-Derived Mesenchymal Stem Cells from the Brain after Intra-arterial Infusion in Rats. Cell Transplantation, 2015, 24, 819-828.	2.5	27
13	Safety and biodistribution study of bone marrow–derived mesenchymal stromal cells and mononuclear cells and the impact of the administration route in an intact porcine model. Cytotherapy, 2015, 17, 392-402.	0.7	66
14	Unexpected Complication in a Rat Stroke Model: Exacerbation of Secondary Pathology in the Thalamus by Subacute Intraarterial Administration of Human Bone Marrow-Derived Mesenchymal Stem Cells. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 363-366.	4.3	12
15	Xeno-free chondrogenesis of bone marrow mesenchymal stromal cells: towards clinical-grade chondrocyte production. Cytotechnology, 2015, 67, 905-919.	1.6	5
16	Extracellular O-Linked N-Acetylglucosamine Is Enriched in Stem Cells Derived from Human Umbilical Cord Blood. BioResearch Open Access, 2014, 3, 39-44.	2.6	9
17	Human bone marrow mesenchymal stem/stromal cells produce efficient localization in the brain and enhanced angiogenesis after intra-arterial delivery in rats with cerebral ischemia, but this is not translated to behavioral recovery. Behavioural Brain Research, 2014, 259, 50-59.	2.2	41
18	Transient Proteolytic Modification of Mesenchymal Stromal Cells Increases Lung Clearance Rate and Targeting to Injured Tissue. Stem Cells Translational Medicine, 2013, 2, 510-520.	3.3	34

Johanna M Nystedt

#	Article	IF	CITATIONS
19	Intra-arterial infusion of human bone marrow-derived mesenchymal stem cells results in transient localization in the brain after cerebral ischemia in rats. Experimental Neurology, 2013, 239, 158-162.	4.1	70
20	Cell Surface Structures Influence Lung Clearance Rate of Systemically Infused Mesenchymal Stromal Cells. Stem Cells, 2013, 31, 317-326.	3.2	103
21	Mitochondrial Function and Energy Metabolism in Umbilical Cord Blood- and Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells and Development, 2012, 21, 575-588.	2.1	62
22	The Isolation and Culture of Human Cord Blood-Derived Mesenchymal Stem Cells Under Low Oxygen Conditions. Methods in Molecular Biology, 2011, 698, 63-73.	0.9	23
23	Human CMP- <i>N</i> -Acetylneuraminic Acid Hydroxylase Is a Novel Stem Cell Marker Linked to Stem Cell-Specific Mechanisms. Stem Cells, 2010, 28, 258-267.	3.2	26
24	Umbilical Cord Blood–derived Progenitor Cells Enhance Muscle Regeneration in Mouse Hindlimb Ischemia Model. Molecular Therapy, 2007, 15, 2172-2177.	8.2	63
25	Identification of transcriptional regulators of neuropeptide FF gene expression. Peptides, 2006, 27, 1020-1035.	2.4	11
26	Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Research, 2006, 1123, 207-215.	2.2	86
27	Human cord blood CD34+ cells and behavioral recovery following focal cerebral ischemia in rats. Acta Neurobiologiae Experimentalis, 2006, 66, 293-300.	0.7	20
28	The Orexin/Hypocretin System in Zebrafish Is Connected to the Aminergic and Cholinergic Systems. Journal of Neuroscience, 2004, 24, 2678-2689.	3.6	261
29	Pain- and morphine-associated transcriptional regulation of neuropeptide FF and the G-protein-coupled NPFF2 receptor gene. Neurobiology of Disease, 2004, 16, 254-262.	4.4	21
30	Expression of neuropeptide FF, prolactin-releasing peptide, and the receptor UHR1/GPR10 genes during embryogenesis in the rat. Developmental Dynamics, 2003, 226, 561-569.	1.8	15
31	Culturing and characterization of astrocytes isolated from juvenile rainbow trout (Oncorhynchus) Tj ETQq1 1 0.7 2002, 133, 17-28.	'84314 rgB 1.8	8T /Overloc 16
32	Analysis of human neuropeptide FF gene expression. Journal of Neurochemistry, 2002, 82, 1330-1342.	3.9	15
33	Toward a More Effective Intravascular Cell Therapy in Stroke. , 0, , .		1