
Raphael Kopan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2562293/publications.pdf Version: 2024-02-01

RADHAEL KODAN

#	Article	IF	CITATIONS
1	The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell, 2009, 137, 216-233.	13.5	3,022
2	A presenilin-1-dependent Î ³ -secretase-like protease mediates release of Notch intracellular domain. Nature, 1999, 398, 518-522.	13.7	2,002
3	Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature, 1998, 393, 382-386.	13.7	1,534
4	Signalling downstream of activated mammalian Notch. Nature, 1995, 377, 355-358.	13.7	1,329
5	Notch Signaling: From the Outside In. Developmental Biology, 2000, 228, 151-165.	0.9	885
6	A Ligand-Induced Extracellular Cleavage Regulates Î ³ -Secretase-like Proteolytic Activation of Notch1. Molecular Cell, 2000, 5, 197-206.	4.5	794
7	AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nature Immunology, 2012, 13, 144-151.	7.0	646
8	NOTCH ANDPRESENILIN: Regulated Intramembrane Proteolysis Links Development and Degeneration. Annual Review of Neuroscience, 2003, 26, 565-597.	5.0	612
9	Patterning a Complex Organ: Branching Morphogenesis and Nephron Segmentation in Kidney Development. Developmental Cell, 2010, 18, 698-712.	3.1	596
10	Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nature Medicine, 2008, 14, 306-314.	15.2	532
11	γ-Secretase: proteasome of the membrane?. Nature Reviews Molecular Cell Biology, 2004, 5, 499-504.	16.1	528
12	Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1683-1688.	3.3	467
13	Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9879-9884.	3.3	465
14	Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nature Immunology, 2013, 14, 937-948.	7.0	368
15	Dll1- and Dll4-Mediated Notch Signaling Are Required for Homeostasis of Intestinal Stem Cells. Gastroenterology, 2011, 140, 1230-1240.e7.	0.6	344
16	F3/Contactin Acts as a Functional Ligand for Notch during Oligodendrocyte Maturation. Cell, 2003, 115, 163-175.	13.5	332
17	Intramembrane Proteolysis: Theme and Variations. Science, 2004, 305, 1119-1123.	6.0	330
18	Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature, 2000, 405, 966-970.	13.7	315

#	Article	IF	CITATIONS
19	Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development (Cambridge), 2007, 134, 801-811.	1.2	310
20	The Canonical Notch Signaling Pathway: Structural and Biochemical Insights into Shape, Sugar, and Force. Developmental Cell, 2017, 41, 228-241.	3.1	291
21	Î ³ -Secretase Functions through Notch Signaling to Maintain Skin Appendages but Is Not Required for Their Patterning or Initial Morphogenesis. Developmental Cell, 2004, 7, 731-743.	3.1	282
22	A Loss of Function Mutation of Presenilin-2 Interferes with Amyloid β-Peptide Production and Notch Signaling. Journal of Biological Chemistry, 1999, 274, 28669-28673.	1.6	279
23	FGF9 and FGF20 Maintain the Stemness of Nephron Progenitors in Mice and Man. Developmental Cell, 2012, 22, 1191-1207.	3.1	268
24	Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Developmental Biology, 2004, 269, 81-94.	0.9	260
25	Cell Surface Presenilin-1 Participates in the γ-Secretase-like Proteolysis of Notch. Journal of Biological Chemistry, 1999, 274, 36801-36807.	1.6	246
26	The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development (Cambridge), 2005, 132, 4353-4362.	1.2	246
27	Epidermal Notch1 Loss Promotes Skin Tumorigenesis by Impacting the Stromal Microenvironment. Cancer Cell, 2009, 16, 55-66.	7.7	245
28	Metalloprotease ADAM10 Is Required for Notch1 Site 2 Cleavage. Journal of Biological Chemistry, 2009, 284, 31018-31027.	1.6	231
29	Notch Signaling. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011213-a011213.	2.3	220
30	A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood, 2004, 104, 3097-3105.	0.6	212
31	Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. Journal of Cell Science, 2010, 123, 213-224.	1.2	207
32	A presenilin dimer at the core of the Â-secretase enzyme: Insights from parallel analysis of Notch 1 and APP proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13075-13080.	3.3	203
33	A common enzyme connects Notch signaling and Alzheimer's disease. Genes and Development, 2000, 14, 2799-2806.	2.7	202
34	NOTCH1 Regulates Osteoclastogenesis Directly in Osteoclast Precursors and Indirectly via Osteoblast Lineage Cells. Journal of Biological Chemistry, 2008, 283, 6509-6518.	1.6	202
35	Skin-Derived TSLP Triggers Progression from Epidermal-Barrier Defects to Asthma. PLoS Biology, 2009, 7, e1000067.	2.6	202
36	Â-Secretase inhibitors repress thymocyte development. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7487-7491.	3.3	199

#	Article	IF	CITATIONS
37	Target Selectivity of Vertebrate Notch Proteins. Journal of Biological Chemistry, 2006, 281, 5106-5119.	1.6	197
38	Inhibition of granulocytic differentiation by mNotch1. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13014-13019.	3.3	182
39	Î ³ -Secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development (Cambridge), 2003, 130, 5031-5042.	1.2	182
40	Notch: a membrane-bound transcription factor. Journal of Cell Science, 2002, 115, 1095-1097.	1.2	181
41	Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development (Cambridge), 2012, 139, 4365-4373.	1.2	179
42	Evidence for a physical interaction between presenilin and Notch. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3263-3268.	3.3	170
43	Notch-Deficient Skin Induces a Lethal Systemic B-Lymphoproliferative Disorder by Secreting TSLP, a Sentinel for Epidermal Integrity. PLoS Biology, 2008, 6, e123.	2.6	161
44	Murine Notch Homologs (N1–4) Undergo Presenilin-dependent Proteolysis. Journal of Biological Chemistry, 2001, 276, 40268-40273.	1.6	160
45	Notch: a membrane-bound transcription factor. Journal of Cell Science, 2002, 115, 1095-7.	1.2	149
46	Atopic Dermatitis-Like Disease and Associated Lethal Myeloproliferative Disorder Arise from Loss of Notch Signaling in the Murine Skin. PLoS ONE, 2010, 5, e9258.	1.1	148
47	Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration. Nature Medicine, 2004, 10, S26-S33.	15.2	145
48	Notch signal strength controls cell fate in the haemogenic endothelium. Nature Communications, 2015, 6, 8510.	5.8	135
49	Analysis of Notch Function in Presomitic Mesoderm Suggests a Î ³ -Secretase-Independent Role for Presenilins in Somite Differentiation. Developmental Cell, 2005, 8, 677-688.	3.1	132
50	Mapping the consequence of Notch1 proteolysis in vivo with NIP-CRE. Development (Cambridge), 2007, 134, 535-544.	1.2	128
51	SnapShot: Notch Signaling Pathway. Cell, 2007, 128, 1246.e1-1246.e2.	13.5	126
52	Randomized trial of calcipotriol combined with 5-fluorouracil for skin cancer precursor immunotherapy. Journal of Clinical Investigation, 2016, 127, 106-116.	3.9	117
53	Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes. Nature Structural and Molecular Biology, 2010, 17, 1312-1317.	3.6	110
54	Elevated Epidermal Thymic Stromal Lymphopoietin Levels Establish an Antitumor Environment in the Skin. Cancer Cell, 2012, 22, 494-505.	7.7	107

#	Article	IF	CITATIONS
55	Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. Journal of Clinical Investigation, 2011, 121, 800-808.	3.9	104
56	Developmental Signalling: Vertebrate ligands for Notch. Current Biology, 1995, 5, 966-969.	1.8	102
57	Anchoring Notch Genetics and Biochemistry. Molecular Cell, 2004, 13, 619-626.	4.5	101
58	Chronic itch development in sensory neurons requires BRAF signaling pathways. Journal of Clinical Investigation, 2013, 123, 4769-4780.	3.9	97
59	The role of Notch signaling in specification of podocyte and proximal tubules within the developing mouse kidney. Kidney International, 2005, 68, 1951-1952.	2.6	95
60	<i>Rbpj</i> Cell Autonomous Regulation of Retinal Ganglion Cell and Cone Photoreceptor Fates in the Mouse Retina. Journal of Neuroscience, 2009, 29, 12865-12877.	1.7	95
61	Three-dimensional structure of the \hat{I}^3 -secretase complex. Biochemical and Biophysical Research Communications, 2006, 343, 525-534.	1.0	92
62	The Notch pathway: democracy and aristocracy in the selection of cell fate. Current Opinion in Neurobiology, 1996, 6, 594-601.	2.0	89
63	Quantitative Dissection of the Notch:CSL Interaction: Insights into the Notch-mediated Transcriptional Switch. Journal of Molecular Biology, 2007, 365, 577-589.	2.0	89
64	The Extracellular Domain of Notch2 Increases Its Cell-Surface Abundance and Ligand Responsiveness during Kidney Development. Developmental Cell, 2013, 25, 585-598.	3.1	89
65	Intrinsic Age-Dependent Changes and Cell-Cell Contacts Regulate Nephron Progenitor Lifespan. Developmental Cell, 2015, 35, 49-62.	3.1	88
66	Aph-2/Nicastrin. Neuron, 2002, 33, 321-324.	3.8	85
67	Î ³ -Secretase Composed of PS1/Pen2/Aph1a Can Cleave Notch and Amyloid Precursor Protein in the Absence of Nicastrin. Journal of Neuroscience, 2010, 30, 1648-1656.	1.7	84
68	The First Proline of PALP Motif at the C Terminus of Presenilins Is Obligatory for Stabilization, Complex Formation, and γ-Secretase Activities of Presenilins. Journal of Biological Chemistry, 2001, 276, 33273-33281.	1.6	81
69	Notch and Presenilin Regulate Cellular Expansion and Cytokine Secretion but Cannot Instruct Th1/Th2 Fate Acquisition. PLoS ONE, 2008, 3, e2823.	1.1	81
70	Notch: Architect, Landscaper, and Guardian of the Intestine. Gastroenterology, 2011, 141, 448-459.	0.6	81
71	Notch pathway activation can replace the requirement for Wnt4 and Wnt9b in mesenchymal-to-epithelial transition of nephron stem cells. Development (Cambridge), 2011, 138, 4245-4254.	1.2	81
72	Notch signaling in bulge stem cells is not required for selection of hair follicle fate. Development (Cambridge), 2009, 136, 891-896.	1.2	76

#	Article	IF	CITATIONS
73	Physiological Notch Signaling Maintains Bone Homeostasis via RBPjk and Hey Upstream of NFATc1. PLoS Genetics, 2012, 8, e1002577.	1.5	76
74	The contribution of Notch1 to nephron segmentation in the developing kidney is revealed in a sensitized Notch2 background and can be augmented by reducing Mint dosage. Developmental Biology, 2010, 337, 386-395.	0.9	75
75	Presenilin: RIP and beyond. Seminars in Cell and Developmental Biology, 2009, 20, 201-210.	2.3	74
76	Nephron Progenitor Cells. Current Topics in Developmental Biology, 2014, 107, 293-331.	1.0	74
77	Notch signaling regulates gastric antral LGR 5 stem cell function. EMBO Journal, 2015, 34, 2522-2536.	3.5	74
78	Molecular Insights into Segmentation along the Proximal–Distal Axis of the Nephron. Journal of the American Society of Nephrology: JASN, 2007, 18, 2014-2020.	3.0	73
79	Real-Time Imaging of Notch Activation with a Luciferase Complementation-Based Reporter. Science Signaling, 2011, 4, rs7.	1.6	73
80	The intracellular domains of Notch1 and 2 are functionally equivalent during development and carcinogenesis. Development (Cambridge), 2015, 142, 2452-63.	1.2	71
81	Ectodomain Shedding and Intramembrane Cleavage of Mammalian Notch Proteins Are Not Regulated through Oligomerization. Journal of Biological Chemistry, 2004, 279, 50864-50873.	1.6	67
82	Bi-compartmental communication contributes to the opposite proliferative behavior of Notch1-deficient hair follicle and epidermal keratinocytes. Development (Cambridge), 2007, 134, 2795-2806.	1.2	64
83	Genetic interplays between Msx2 and Foxn1 are required for Notch1 expression and hair shaft differentiation. Developmental Biology, 2009, 326, 420-430.	0.9	63
84	Notch1 Signaling Influences V2 Interneuron and Motor Neuron Development in the Spinal Cord. Developmental Neuroscience, 2006, 28, 102-117.	1.0	60
85	Notch signaling is required for the formation of mesangial cells from a stromal mesenchyme precursor during kidney development. Development (Cambridge), 2014, 141, 346-354.	1.2	57
86	Notch1 and 2 cooperate in limb ectoderm to receive an early Jagged2 signal regulating interdigital apoptosis. Developmental Biology, 2005, 286, 472-482.	0.9	55
87	rtTA toxicity limits the usefulness of the SP-C-rtTA transgenic mouse. Developmental Biology, 2009, 325, 171-178.	0.9	55
88	Moonlighting activity of presenilin in plants is independent of Î ³ -secretase and evolutionarily conserved. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13337-13342.	3.3	53
89	Presenilins, Notch dose control the fate of pancreatic endocrine progenitors during a narrow developmental window. Genes and Development, 2009, 23, 2088-2101.	2.7	52
90	SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers. Molecular Cell, 2015, 59, 685-697.	4.5	50

#	Article	IF	CITATIONS
91	Jag1 Modulates an Oscillatory Dll1-Notch-Hes1 Signaling Module to Coordinate Growth and Fate of Pancreatic Progenitors. Developmental Cell, 2020, 52, 731-747.e8.	3.1	50
92	Notch pathway is dispensable for adipocyte specification. Genesis, 2004, 40, 40-44.	0.8	48
93	RNF4-Dependent Oncogene Activation by Protein Stabilization. Cell Reports, 2016, 16, 3388-3400.	2.9	46
94	Structural Analysis Uncovers Lipid-Binding Properties of Notch Ligands. Cell Reports, 2013, 5, 861-867.	2.9	45
95	The Notch Transcription Activation Complex Makes Its Move. Cell, 2006, 124, 883-885.	13.5	43
96	Genetic Mosaic Analysis Indicates That the Bulb Region of Coat Hair Follicles Contains a Resident Population of Several Active Multipotent Epithelial Lineage Progenitors. Developmental Biology, 2002, 242, 44-57.	0.9	42
97	Reduced Notch Signaling Leads to Renal Cysts and Papillary Microadenomas. Journal of the American Society of Nephrology: JASN, 2010, 21, 819-832.	3.0	42
98	Long-range, nonautonomous effects of activated Notch1 on tissue homeostasis in the nailâ~†. Developmental Biology, 2003, 263, 343-359.	0.9	41
99	Thermodynamic Analysis of the CSL·Notch Interaction. Journal of Biological Chemistry, 2010, 285, 6681-6692.	1.6	40
100	Hamartin regulates cessation of mouse nephrogenesis independently of Mtor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5998-6003.	3.3	39
101	Notch on the cutting edge. Trends in Genetics, 1997, 13, 465-467.	2.9	37
102	The anatomical distribution of genetic associations. Nucleic Acids Research, 2015, 43, 10804-10820.	6.5	37
103	Analysis of transmembrane domain mutants is consistent with sequential cleavage of Notch by gamma-secretase. Journal of Neurochemistry, 2006, 96, 228-235.	2.1	36
104	A garden of Notch-ly delights. Development (Cambridge), 2006, 133, 3277-3282.	1.2	35
105	The Black Box Illuminated: Signals and Signaling. Journal of Investigative Dermatology, 2012, 132, 811-819.	0.3	35
106	Desmoglein 4 is regulated by transcription factors implicated in hair shaft differentiation. Differentiation, 2009, 78, 292-300.	1.0	31
107	Glomerular endothelial cell maturation depends on ADAM10, a key regulator of Notch signaling. Angiogenesis, 2018, 21, 335-347.	3.7	31
108	The Absence of a Microbiota Enhances TSLP Expression in Mice with Defective Skin Barrier but Does Not Affect the Severity of their Allergic Inflammation. Journal of Investigative Dermatology, 2013, 133, 2714-2721.	0.3	29

#	Article	lF	CITATIONS
109	Conditional Deletion of Notch1 and Notch2 Genes in Excitatory Neurons of Postnatal Forebrain Does Not Cause Neurodegeneration or Reduction of Notch mRNAs and Proteins. Journal of Biological Chemistry, 2012, 287, 20356-20368.	1.6	28
110	The crystal structure of a partial mouse Notch-1 ankyrin domain: Repeats 4 through 7 preserve an ankyrin fold. Protein Science, 2005, 14, 1274-1281.	3.1	27
111	Haploinsufficiency for the Six2 gene increases nephron progenitor proliferation promoting branching and nephron number. Kidney International, 2018, 93, 589-598.	2.6	27
112	Selective Blockade of Transport via SERCA Inhibition: The Answer for Oncogenic Forms of Notch?. Cancer Cell, 2013, 23, 267-269.	7.7	24
113	Epidermal ADAM17 Is Dispensable for Notch Activation. Journal of Investigative Dermatology, 2013, 133, 2286-2288.	0.3	24
114	Loss of RBPj in Postnatal Excitatory Neurons Does Not Cause Neurodegeneration or Memory Impairments in Aged Mice. PLoS ONE, 2012, 7, e48180.	1.1	22
115	Alagille, Notch, and robustness: why duplicating systems does not ensure redundancy. Pediatric Nephrology, 2014, 29, 651-657.	0.9	21
116	Second-generation Notch1 activity-trap mouse line (N1IP::CreHI) provides a more comprehensive map of cells experiencing Notch1 activity. Development (Cambridge), 2015, 142, 1193-202.	1.2	19
117	Runx1 shapes the chromatin landscape via a cascade of direct and indirect targets. PLoS Genetics, 2021, 17, e1009574.	1.5	19
118	Rapid identification of homologous recombinants and determination of gene copy number with reference/query pyrosequencing (RQPS). Genome Research, 2009, 19, 2081-2089.	2.4	18
119	The Notch Intracellular Domain Has an RBPj-Independent Role during Mouse Hair Follicular Development. Journal of Investigative Dermatology, 2016, 136, 1106-1115.	0.3	15
120	Regulated Intramembrane Proteolysis Takes Another Twist. Developmental Cell, 2001, 1, 590-592.	3.1	14
121	Circulating <scp>TSLP</scp> associates with decreased wheezing in nonâ€atopic preschool children: data from the <scp>URECA</scp> birth cohort. Clinical and Experimental Allergy, 2014, 44, 851-857.	1.4	13
122	A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons. Scientific Reports, 2016, 6, 23969.	1.6	13
123	Notch signaling regulates <i>Akap12</i> expression and primary cilia length during renal tubule morphogenesis. FASEB Journal, 2020, 34, 9512-9530.	0.2	13
124	Enhancer architecture sensitizes cell specific responses to Notch gene dose via a bind and discard mechanism. ELife, 2020, 9, .	2.8	13
125	In Vivo Visualization of Notch1 Proteolysis Reveals the Heterogeneity of Notch1 Signaling Activity in the Mouse Cochlea. PLoS ONE, 2013, 8, e64903.	1.1	12
126	The Rhesus Macaque Serves As a Model for Human Lateral Branch Nephrogenesis. Journal of the American Society of Nephrology: JASN, 2021, 32, 1097-1112.	3.0	12

#	Article	IF	CITATIONS
127	Notch dimerization and gene dosage are important for normal heart development, intestinal stem cell maintenance, and splenic marginal zone B-cell homeostasis during mite infestation. PLoS Biology, 2020, 18, e3000850.	2.6	11
128	Increasing mTORC1 Pathway Activity or Methionine Supplementation during Pregnancy Reverses the Negative Effect of Maternal Malnutrition on the Developing Kidney. Journal of the American Society of Nephrology: JASN, 2021, 32, 1898-1912.	3.0	11
129	TSLP disease-associated genetic variants combined with airway TSLP expression influence asthma risk. Journal of Allergy and Clinical Immunology, 2022, 149, 79-88.	1.5	11
130	Endothelial Notch signaling directly regulates the small GTPase RND1 to facilitate Notch suppression of endothelial migration. Scientific Reports, 2022, 12, 1655.	1.6	11
131	Murine Vibrissae Cultured in Serum-Free Medium Reinitiate Anagen. Journal of Investigative Dermatology, 2008, 128, 482-485.	0.3	10
132	Progenitor translatome changes coordinated by Tsc1 increase perception of Wnt signals to end nephrogenesis. Nature Communications, 2021, 12, 6332.	5.8	10
133	Revisiting the role of Notch in nephron segmentation confirms a role for proximal fate selection during mouse and human nephrogenesis. Development (Cambridge), 2022, 149, .	1.2	9
134	Chromatin-based Mechanisms of Renal Epithelial Differentiation. Journal of the American Society of Nephrology: JASN, 2011, 22, 1208-1212.	3.0	8
135	Analysis of chromatin accessibility in human epidermis identifies putative barrier dysfunction-sensing enhancers. PLoS ONE, 2017, 12, e0184500.	1.1	8
136	Making new kidneys. Current Opinion in Organ Transplantation, 2016, 21, 574-580.	0.8	7
137	Monitoring Notch Activation in Cultured Mammalian Cells: Luciferase Complementation Imaging Assays. Methods in Molecular Biology, 2014, 1187, 155-168.	0.4	6
138	Simple Copy Number Determination with Reference Query Pyrosequencing (RQPS). Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5491.	0.2	5
139	Enhancers with cooperative Notch binding sites are more resistant to regulation by the Hairless co-repressor. PLoS Genetics, 2021, 17, e1009039.	1.5	4
140	Synthesis and possible role of proteoglycans during Volvox development. Cell Differentiation, 1985, 16, 119-132.	1.3	2
141	Differentiation and gene regulation: Toward a holistic understanding of animal development: intercellular communication and transcriptional regulation are two sides of the same coin. Current Opinion in Genetics and Development, 2002, 12, 499-502.	1.5	2
142	A Faster Migrating Variant Masquerades as NICD When Performing in Vitro γ-Secretase Assays with Bacterially Expressed Notch Substratesâ€. Biochemistry, 2006, 45, 5351-5358.	1.2	2
143	Notch Signaling in Nephron Segmentation. , 2016, , 87-93.		2
144	Monitoring Notch Activation in Cultured Mammalian Cells: Transcriptional Reporter Assays. Methods in Molecular Biology, 2014, 1187, 143-154.	0.4	2

#	Article	IF	CITATIONS
145	Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development (Cambridge), 2007, 134, 4506-4506.	1.2	1
146	Metalloprotease ADAM10 is required for Notch1 site 2 cleavage Journal of Biological Chemistry, 2010, 285, 11754.	1.6	0
147	Reply to Gaiano et al.: Expression of Notch Proteins in Pyramidal Neurons in Vivo. Journal of Biological Chemistry, 2012, 287, 24596.	1.6	0
148	The Unaimed Arrow Never Misses. Current Topics in Developmental Biology, 2016, 116, 547-550.	1.0	0
149	Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. Development (Cambridge), 2010, 137, e1-e1.	1.2	0
150	\hat{I}^3 -Secretase Mediated Proteolysis: At the Cutting Edge of Notch Signaling. , 2007, , 111-140.		0
151	Title is missing!. , 2020, 18, e3000850.		0
152	Title is missing!. , 2020, 18, e3000850.		0
153	Title is missing!. , 2020, 18, e3000850.		0
154	Title is missing!. , 2020, 18, e3000850.		0
155	Title is missing!. , 2020, 18, e3000850.		0
156	Title is missing!. , 2020, 18, e3000850.		0
157	Title is missing!. , 2020, 18, e3000850.		0

158 Title is missing!. , 2020, 18, e3000850.

0