
Qian Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2561920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A rice XANTHINE DEHYDROGENASE gene regulates leaf senescence and response to abiotic stresses. Crop Journal, 2022, 10, 310-322.	5.2	7
2	CRISPR as9 mediated <i>OsMIR168a</i> knockout reveals its pleiotropy in rice. Plant Biotechnology Journal, 2022, 20, 310-322.	8.3	32
3	UDPâ€∢i>Nâ€acetylglucosamine pyrophosphorylase enhances rice survival at high temperature. New Phytologist, 2022, 233, 344-359.	7.3	19
4	Chromosome-level genome assembly of Zizania latifolia provides insights into its seed shattering and phytocassane biosynthesis. Communications Biology, 2022, 5, 36.	4.4	11
5	Genome-wide association study and transcriptome analysis reveal new QTL and candidate genes for nitrogenâ€deficiency tolerance in rice. Crop Journal, 2022, 10, 942-951.	5.2	19
6	The Potential Roles of Unique Leaf Structure for the Adaptation of Rheum tanguticum Maxim. ex Balf. in Qinghai–Tibetan Plateau. Plants, 2022, 11, 512.	3.5	3
7	Partially functional <i>NARROW LEAF1</i> balances leaf photosynthesis and plant architecture for greater rice yield. Plant Physiology, 2022, 189, 772-789.	4.8	12
8	LMPA Regulates Lesion Mimic Leaf and Panicle Development Through ROS-Induced PCD in Rice. Frontiers in Plant Science, 2022, 13, 875038.	3.6	7
9	The divergence of brassinosteroid sensitivity between rice subspecies involves natural variation conferring altered internal autoâ€binding of OsBSK2. Journal of Integrative Plant Biology, 2022, 64, 1614-1630.	8.5	6
10	A super pan-genomic landscape of rice. Cell Research, 2022, 32, 878-896.	12.0	99
11	LRG1 maintains sterile lemma identity by regulating OsMADS6 expression in rice. Science China Life Sciences, 2021, 64, 1190-1192.	4.9	4
12	Disruption of <i>EARLY LESION LEAF 1</i> , encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice. Plant Journal, 2021, 105, 942-956.	5.7	56
13	The rice LRR-like1 protein YELLOW AND PREMATURE DWARF 1 is involved in leaf senescence induced by high light. Journal of Experimental Botany, 2021, 72, 1589-1605.	4.8	10
14	Functional analysis of auxin receptor <i>OsTIR1</i> / <i>OsAFB</i> family members in rice grain yield, tillering, plant height, root system, germination, and auxinic herbicide resistance. New Phytologist, 2021, 229, 2676-2692.	7.3	45
15	Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. Science China Life Sciences, 2021, 64, 720-738.	4.9	9
16	<i>PHOTO‣ENSITIVE LEAF ROLLING 1</i> encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice. New Phytologist, 2021, 229, 890-901.	7.3	40
17	Efficient deletion of multiple circle RNA loci by CRISPR as9 reveals <i>Os06circ02797</i> as a putative sponge for <i>OsMIR408</i> in rice. Plant Biotechnology Journal, 2021, 19, 1240-1252.	8.3	37
18	The LARGE2-APO1/APO2 regulatory module controls panicle size and grain number in rice. Plant Cell, 2021, 33, 1212-1228.	6.6	48

#	Article	IF	CITATIONS
19	A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184, 1156-1170.e14.	28.9	259
20	The ell1 mutation disrupts tryptophan metabolism and induces cell death. Plant Signaling and Behavior, 2021, 16, 1905336.	2.4	1
21	Rice Ferredoxins localize to chloroplasts/plastids and may function in different tissues. Plant Signaling and Behavior, 2021, 16, 1926813.	2.4	2
22	The <i>SEEDLING BIOMASS 1</i> allele from <i>indica</i> rice enhances yield performance under lowâ€nitrogen environments. Plant Biotechnology Journal, 2021, 19, 1681-1683.	8.3	10
23	A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Molecular Plant, 2021, 14, 1683-1698.	8.3	61
24	OsMORF9 is necessary for chloroplast development and seedling survival in rice. Plant Science, 2021, 307, 110907.	3.6	16
25	The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Molecular Plant, 2021, 14, 1012-1023.	8.3	36
26	Progress and Prospect of Breeding Utilization of Green Revolution Gene SD1 in Rice. Agriculture (Switzerland), 2021, 11, 611.	3.1	16
27	Primary root and root hair development regulation by <i>OsAUX4</i> and its participation in the phosphate starvation response. Journal of Integrative Plant Biology, 2021, 63, 1555-1567.	8.5	20
28	A βâ€ketoacyl carrier protein reductase confers heat tolerance via the regulation of fatty acid biosynthesis and stress signaling in rice. New Phytologist, 2021, 232, 655-672.	7.3	26
29	The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Molecular Plant, 2021, 14, 1266-1280.	8.3	70
30	<i>>WHITE AND LESIONâ€MIMIC LEAF1</i> , encoding a lumazine synthase, affects reactive oxygen species balance and chloroplast development in rice. Plant Journal, 2021, 108, 1690-1703.	5.7	8
31	Loci and Natural Alleles for Low-Nitrogen-Induced Growth Response Revealed by the Genome-Wide Association Study Analysis in Rice (Oryza sativa L.). Frontiers in Plant Science, 2021, 12, 770736.	3.6	4
32	Using <i>Heading date 1</i> preponderant alleles from <i>indica</i> cultivars to breed highâ€yield, highâ€quality <i>japonica</i> rice varieties for cultivation in south China. Plant Biotechnology Journal, 2020, 18, 119-128.	8.3	30
33	Multifloret spikelet improves rice yield. New Phytologist, 2020, 225, 2301-2306.	7.3	28
34	ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality. Science China Life Sciences, 2020, 63, 228-238.	4.9	28
35	Cyclophilin OsCYP20â€⊋ with a novel variant integrates defense and cell elongation for chilling response in rice. New Phytologist, 2020, 225, 2453-2467.	7.3	19
36	MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nature Communications, 2020, 11, 5219.	12.8	61

#	Article	IF	CITATIONS
37	Karrikin Signaling Acts Parallel to and Additively with Strigolactone Signaling to Regulate Rice Mesocotyl Elongation in Darkness. Plant Cell, 2020, 32, 2780-2805.	6.6	65
38	MORE FLORET1 Encodes a MYB Transcription Factor That Regulates Spikelet Development in Rice. Plant Physiology, 2020, 184, 251-265.	4.8	16
39	Leaf width gene LW5/D1 affects plant architecture and yield in rice by regulating nitrogen utilization efficiency. Plant Physiology and Biochemistry, 2020, 157, 359-369.	5.8	17
40	Development of Rice Leaves: How Histocytes Modulate Leaf Polarity Establishment. Rice Science, 2020, 27, 468-479.	3.9	12
41	The complete chloroplast genome of <i>Saussurea medusa</i> (Asteraceae), a rare subnival plant in Qinghai-Tibetan Plateau. Mitochondrial DNA Part B: Resources, 2020, 5, 3563-3564.	0.4	1
42	OsCAF2 contains two CRM domains and is necessary for chloroplast development in rice. BMC Plant Biology, 2020, 20, 381.	3.6	9
43	Rice EARLY SENESCENCE 2, encoding an inositol polyphosphate kinase, is involved in leaf senescence. BMC Plant Biology, 2020, 20, 393.	3.6	16
44	The C2H2 zinc-finger protein LACKING RUDIMENTARY GLUME 1 regulates spikelet development in rice. Science Bulletin, 2020, 65, 753-764.	9.0	16
45	Combinatorial Evolution of a Terpene Synthase Gene Cluster Explains Terpene Variations in <i>Oryza</i> . Plant Physiology, 2020, 182, 480-492.	4.8	33
46	Natural variation in the promoter of <i>TGW2</i> determines grain width and weight in rice. New Phytologist, 2020, 227, 629-640.	7.3	89
47	Production of novel beneficial alleles of a rice yieldâ€related QTL by CRISPR/Cas9. Plant Biotechnology Journal, 2020, 18, 1987-1989.	8.3	33
48	Primary leafâ€ŧype ferredoxinÂ1 participates in photosynthetic electron transport and carbon assimilation in rice. Plant Journal, 2020, 104, 44-58.	5.7	26
49	Gain-of-function mutations: key tools for modifying or designing novel proteins in plant molecular engineering. Journal of Experimental Botany, 2020, 71, 1203-1205.	4.8	5
50	Understanding divergent domestication traits from the whole-genome sequencing of swamp- and river-buffalo populations. National Science Review, 2020, 7, 686-701.	9.5	43
51	Control of Grain Size and Weight by the GSK2-LARGE1/OML4 Pathway in Rice. Plant Cell, 2020, 32, 1905-1918.	6.6	61
52	Isolation of TSCD11 Gene for Early Chloroplast Development under High Temperature in Rice. Rice, 2020, 13, 49.	4.0	11
53	Short-term stress from high light and high temperature triggers transcriptomic changes in the <i>local lesions 1</i> rice mutant. Plant Signaling and Behavior, 2019, 14, e1649568.	2.4	0
54	Mutation of a Nucleotide-Binding Leucine-Rich Repeat Immune Receptor-Type Protein Disrupts Immunity to Bacterial Blight. Plant Physiology, 2019, 181, 1295-1313.	4.8	13

#	Article	IF	CITATIONS
55	<i><scp>AH</scp>2</i> encodes a <scp>MYB</scp> domain protein that determines hull fate and affects grain yield and quality in rice. Plant Journal, 2019, 100, 813-824.	5.7	36
56	The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nature Communications, 2019, 10, 5207.	12.8	151
57	A 3-bp deletion of WLS5 gene leads to weak growth and early leaf senescence in rice. Rice, 2019, 12, 26.	4.0	6
58	OsCAF1, a CRM Domain Containing Protein, Influences Chloroplast Development. International Journal of Molecular Sciences, 2019, 20, 4386.	4.1	13
59	Characterization, Expression, and Interaction Analyses of OsMORF Gene Family in Rice. Genes, 2019, 10, 694.	2.4	10
60	FON 4 prevents the multiâ€floret spikelet in rice. Plant Biotechnology Journal, 2019, 17, 1007-1009.	8.3	29
61	A Nckâ€associated protein 1â€like protein affects drought sensitivity by its involvement in leaf epidermal development and stomatal closure in rice. Plant Journal, 2019, 98, 884-897.	5.7	19
62	Rapid Creation of New Photoperiod-/Thermo-Sensitive Genic Male-Sterile Rice Materials by CRISPR/Cas9 System. Rice Science, 2019, 26, 129-132.	3.9	10
63	Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces. Scientific Reports, 2019, 9, 19096.	3.3	45
64	Os <scp>ACL</scp> â€A2 negatively regulates cell death and disease resistance in rice. Plant Biotechnology Journal, 2019, 17, 1344-1356.	8.3	46
65	The auxin influx carrier, OsAUX3, regulates rice root development and responses to aluminium stress. Plant, Cell and Environment, 2019, 42, 1125-1138.	5.7	57
66	DNA damage and reactive oxygen species cause cell death in the rice <i>local lesions 1</i> mutant under high light and high temperature. New Phytologist, 2019, 222, 349-365.	7.3	44
67	Functional Analysis of Three Rice Chloroplast Transit Peptides. Rice Science, 2019, 26, 11-20.	3.9	3
68	<i>PALE-GREEN LEAF12</i> Encodes a Novel Pentatricopeptide Repeat Protein Required for Chloroplast Development and 16S rRNA Processing in Rice. Plant and Cell Physiology, 2019, 60, 587-598.	3.1	24
69	Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nature Communications, 2018, 9, 735.	12.8	82
70	UMP kinase activity is involved in proper chloroplast development in rice. Photosynthesis Research, 2018, 137, 53-67.	2.9	19
71	The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Science, 2018, 267, 168-179.	3.6	70
72	FRUCTOKINASEâ€LIKE PROTEIN 1 interacts with TRXz to regulate chloroplast development in rice. Journal of Integrative Plant Biology, 2018, 60, 94-111.	8.5	48

#	Article	IF	CITATIONS
73	†Twoâ€floret spikelet' as a novel resource has the potential to increase rice yield. Plant Biotechnology Journal, 2018, 16, 351-353.	8.3	34
74	The rice white green leaf 2 gene causes defects in chloroplast development and affects the plastid ribosomal protein S9. Rice, 2018, 11, 39.	4.0	35
75	Knocking Out the Gene RLS1 Induces Hypersensitivity to Oxidative Stress and Premature Leaf Senescence in Rice. International Journal of Molecular Sciences, 2018, 19, 2853.	4.1	12
76	Callus Initiation from Root Explants Employs Different Strategies in Rice and Arabidopsis. Plant and Cell Physiology, 2018, 59, 1782-1789.	3.1	19
77	Genetic analysis and fine-mapping of a new rice mutant, white and lesion mimic leaf1. Plant Growth Regulation, 2018, 85, 425-435.	3.4	20
78	FZP determines grain size and sterile lemma fate in rice. Journal of Experimental Botany, 2018, 69, 4853-4866.	4.8	45
79	A Rice <i>PECTATE LYASE-LIKE</i> Gene Is Required for Plant Growth and Leaf Senescence. Plant Physiology, 2017, 174, 1151-1166.	4.8	96
80	Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice. Molecular Plant, 2017, 10, 685-694.	8.3	253
81	Rational design of high-yield and superior-quality rice. Nature Plants, 2017, 3, 17031.	9.3	293
82	The rice YGL gene encoding an Mg2+-chelatase ChlD subunit is affected by temperature for chlorophyll biosynthesis. Journal of Plant Biology, 2017, 60, 314-321.	2.1	15
83	Characterization and fine mapping of a new early leaf senescence mutant es3(t) in rice. Plant Growth Regulation, 2017, 81, 419-431.	3.4	18
84	Fine Mapping of a Novel defective glume 1 (dg1) Mutant, Which Affects Vegetative and Spikelet Development in Rice. Frontiers in Plant Science, 2017, 8, 486.	3.6	8
85	Regulatory Role of OsMADS34 in the Determination of Glumes Fate, Grain Yield, and Quality in Rice. Frontiers in Plant Science, 2016, 7, 1853.	3.6	29
86	Mutation of OsNaPRT1 in the NAD Salvage Pathway Leads to Withered Leaf Tips in Rice. Plant Physiology, 2016, 171, pp.01898.2015.	4.8	50
87	Rice Ferredoxin-Dependent Glutamate Synthase Regulates Nitrogen–Carbon Metabolomes and Is Genetically Differentiated between japonica and indica Subspecies. Molecular Plant, 2016, 9, 1520-1534.	8.3	73
88	Characterization and fine mapping of the rice gene OsARVL4 regulating leaf morphology and leaf vein development. Plant Growth Regulation, 2016, 78, 345-356.	3.4	36
89	Fine Mapping Identifies a New QTL for Brown Rice Rate in Rice (Oryza Sativa L.). Rice, 2016, 9, 4.	4.0	38
90	Involvement of a Putative Bipartite Transit Peptide in Targeting Rice Pheophorbide a Oxygenase into Chloroplasts for Chlorophyll Degradation during Leaf Senescence. Journal of Genetics and Genomics, 2016, 43, 145-154.	3.9	16

#	Article	IF	CITATIONS
91	<i>PGL</i> , encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. Journal of Experimental Botany, 2016, 67, 1297-1310.	4.8	109
92	Breeding high-yield superior quality hybrid super rice by rational design. National Science Review, 2016, 3, 283-294.	9.5	179
93	A host plant genome (<i>Zizania latifolia</i>) after a centuryâ€long endophyte infection. Plant Journal, 2015, 83, 600-609.	5.7	67
94	The auxin transporter, Os <scp>AUX</scp> 1, is involved in primary root and root hair elongation and in Cd stress responses in rice (<i>OryzaAsativa</i> L.). Plant Journal, 2015, 83, 818-830.	5.7	144
95	COLD1 Confers Chilling Tolerance in Rice. Cell, 2015, 160, 1209-1221.	28.9	724
96	Rice <i>TUTOU1</i> Encodes a Suppressor of cAMP Receptor-Like Protein That Is Important for Actin Organization and Panicle Development. Plant Physiology, 2015, 169, 1179-1191.	4.8	59
97	Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 2015, 47, 944-948.	21.4	485
98	A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice. Molecular Plant, 2015, 8, 1455-1465.	8.3	382
99	Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nature Communications, 2015, 6, 7395.	12.8	95
100	Functional Inactivation of Putative Photosynthetic Electron Acceptor Ferredoxin C2 (FdC2) Induces Delayed Heading Date and Decreased Photosynthetic Rate in Rice. PLoS ONE, 2015, 10, e0143361.	2.5	31
101	Auxin response factor (Os <scp>ARF</scp> 12), a novel regulator for phosphate homeostasis in rice (<i>Oryza sativa</i>). New Phytologist, 2014, 201, 91-103.	7.3	115
102	Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11199-11204.	7.1	121
103	Os <scp>ABCB</scp> 14 functions in auxin transport and iron homeostasis in rice (<i>Oryza) Tj ETQq1 1 0.784314</i>	4 rgBT /O\ 5.7	verlock 10 T
104	Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics, 2014, 46, 652-656.	21.4	338
105	LSCHL4 from Japonica Cultivar, Which Is Allelic to NAL1 , Increases Yield of Indica Super Rice 93-11. Molecular Plant, 2014, 7, 1350-1364.	8.3	125
106	<i><scp>SMALL GRAIN</scp> 1</i> , which encodes a mitogenâ€activated protein kinase kinase 4, influences grain size in rice. Plant Journal, 2014, 77, 547-557.	5.7	175
107	Genome-Wide Binding Analysis of the Transcription Activator IDEAL PLANT ARCHITECTURE1 Reveals a Complex Network Regulating Rice Plant Architecture. Plant Cell, 2013, 25, 3743-3759.	6.6	588
108	DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504, 401-405.	27.8	660

#	Article	IF	CITATIONS
109	A point mutation in the zinc finger motif of RID1/EHD2/OsID1 protein leads to outstanding yield-related traits in japonica rice variety Wuyunjing 7. Rice, 2013, 6, 24.	4.0	33
110	OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (<i>Oryza sativa</i> L.). Plant, Cell and Environment, 2013, 36, 607-620.	5.7	142
111	Rice zinc finger protein DST enhances grain production through controlling <i>Gn1a/OsCKX2</i> expression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3167-3172.	7.1	252
112	Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14492-14497.	7.1	155
113	<i>SEMI</i> - <i>ROLLED LEAF1</i> Encodes a Putative Glycosylphosphatidylinositol-Anchored Protein and Modulates Rice Leaf Rolling by Regulating the Formation of Bulliform Cells Â. Plant Physiology, 2012, 159, 1488-1500.	4.8	114
114	Rare allele of <i>OsPPKL1</i> associated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21534-21539.	7.1	426
115	Genetic, Molecular and Genomic Basis of Rice Defense against Insects. Critical Reviews in Plant Sciences, 2012, 31, 74-91.	5.7	28
116	A map of rice genome variation reveals the origin of cultivated rice. Nature, 2012, 490, 497-501.	27.8	1,428
117	DWARF AND LOW-TILLERING Acts as a Direct Downstream Target of a GSK3/SHAGGY-Like Kinase to Mediate Brassinosteroid Responses in Rice. Plant Cell, 2012, 24, 2562-2577.	6.6	292
118	Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012, 44, 950-954.	21.4	1,004
119	Map-based cloning proves qGC-6, a major QTL for gel consistency of japonica/indica cross, responds by Waxy in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2011, 123, 859-867.	3.6	75
120	Brittleâ€fCulmâ€f12, a dualâ€ŧargeting kinesinâ€4 protein, controls cell ycle progression and wall properties in rice. Plant Journal, 2010, 63, 312-328.	5.7	114
121	The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis. Plant Journal, 2010, 64, no-no.	5.7	70
122	Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 2010, 42, 541-544.	21.4	1,240
123	ELE restrains empty glumes from developing into lemmas. Journal of Genetics and Genomics, 2010, 37, 101-115.	3.9	46
124	SHALLOT-LIKE1 Is a KANADI Transcription Factor That Modulates Rice Leaf Rolling by Regulating Leaf Abaxial Cell Development Â. Plant Cell, 2009, 21, 719-735.	6.6	211
125	A putative lipase gene <i>EXTRA GLUME1</i> regulates both emptyâ€glume fate and spikelet development in rice. Plant Journal, 2009, 57, 593-605.	5.7	81
126	<i>Short panicle1</i> encodes a putative PTR family transporter and determines rice panicle size. Plant Journal, 2009, 58, 592-605.	5.7	215

#	Article	IF	CITATIONS
127	Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 2009, 41, 494-497.	21.4	858
128	<i>RETARDED PALEA1</i> Controls Palea Development and Floral Zygomorphy in Rice Â. Plant Physiology, 2009, 149, 235-244.	4.8	189
129	DWARF27, an Iron-Containing Protein Required for the Biosynthesis of Strigolactones, Regulates Rice Tiller Bud Outgrowth Â. Plant Cell, 2009, 21, 1512-1525.	6.6	549
130	Mutation of the Rice <i>Narrow leaf1</i> Gene, Which Encodes a Novel Protein, Affects Vein Patterning and Polar Auxin Transport. Plant Physiology, 2008, 147, 1947-1959.	4.8	232
131	Independent Losses of Function in a Polyphenol Oxidase in Rice: Differentiation in Grain Discoloration between Subspecies and the Role of Positive Selection under Domestication. Plant Cell, 2008, 20, 2946-2959.	6.6	80
132	Genetic and Molecular Analysis of Utility of sd1 Alleles in Rice Breeding. Breeding Science, 2007, 57, 53-58.	1.9	90
133	An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant Journal, 2006, 45, 46-57.	5.7	88
134	LEAFY HEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice. Cell Research, 2006, 16, 267-276.	12.0	24
135	QTLs and candidate genes for chlorate resistance in rice (Oryzasativa L.). Euphytica, 2006, 152, 141-148.	1.2	14
136	The FLORAL ORGAN NUMBER4 Gene Encoding a Putative Ortholog of Arabidopsis CLAVATA3 Regulates Apical Meristem Size in Rice. Plant Physiology, 2006, 142, 1039-1052.	4.8	198
137	Cytokinin Oxidase Regulates Rice Grain Production. Science, 2005, 309, 741-745.	12.6	1,620
138	Genetic analysis of morphological index and its related taxonomic traits for classification of indica/japonica rice. Science in China Series C: Life Sciences, 2000, 43, 113-119.	1.3	15
139	QTL analysis of the rice seedling cold tolerance in a double haploid population derived from anther culture of a hybrid betweenindica andjaponica rice. Science Bulletin, 2000, 45, 448-453.	1.7	35
140	Identification of salt-tolerance QTL in rice (Oryza sativa L.). Science Bulletin, 1999, 44, 68-71.	1.7	45