List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2561868/publications.pdf Version: 2024-02-01

1/	C		
KEN		10/	

#	Article	IF	CITATIONS
1	Two novel poty-like viruses identified from the transcriptome data of purple witchweed (Striga) Tj ETQq1 1 0.784	314 rgBT 0.8	/Oyerlock 10
2	Discovery of the interfamily grafting capacity of <i>Petunia</i> , a floricultural species. Horticulture Research, 2022, 9, .	6.3	11
3	High-Quality Genome Sequence Resource of the Taro Pathogen <i>Phytophthora colocasiae</i> . Molecular Plant-Microbe Interactions, 2022, 35, 297-299.	2.6	0
4	Simultaneous mutations in <i>SMN1</i> and <i>SUMM2</i> fully suppress the dwarf and autoimmune phenotypes of <i>Arabidopsis mpk4</i> mutant. Plant Signaling and Behavior, 2022, 17, 2046412.	2.4	4
5	Apoplastic Expression of CARD1-ecto Domain in Nicotiana benthamiana and Purification from the Apoplastic Fluids. Bio-protocol, 2022, 12, .	0.4	2
6	Recognition of pathogen-derived sphingolipids in <i>Arabidopsis</i> . Science, 2022, 376, 857-860.	12.6	22
7	Orobanchaceae parasite–host interactions. New Phytologist, 2021, 230, 46-59.	7.3	40
8	Telomeres and a repeatâ€rich chromosome encode effector gene clusters in plant pathogenic <i>Colletotrichum</i> fungi. Environmental Microbiology, 2021, 23, 6004-6018.	3.8	17
9	Analysis of Genetic Diversity and Population Structure of Orobanche foetida Populations From Tunisia Using RADseq. Frontiers in Plant Science, 2021, 12, 618245.	3.6	10
10	Transcriptomic Analysis of Resistant and Susceptible Responses in a New Model Root-Knot Nematode Infection System Using Solanum torvum and Meloidogyne arenaria. Frontiers in Plant Science, 2021, 12, 680151.	3.6	16
11	Tobacco Root Endophytic <i>Arthrobacter</i> Harbors Genomic Features Enabling the Catabolism of Host-Specific Plant Specialized Metabolites. MBio, 2021, 12, e0084621.	4.1	14
12	Comparative transient expression analyses on two conserved effectors of <i>Colletotrichum orbiculare</i> reveal their distinct cell deathâ€inducing activities between <i>Nicotiana benthamiana</i> and melon. Molecular Plant Pathology, 2021, 22, 1006-1013.	4.2	9
13	A pair of effectors encoded on a conditionally dispensable chromosome of Fusarium oxysporum suppress host-specific immunity. Communications Biology, 2021, 4, 707.	4.4	23
14	Draft Genome Resources for Brassicaceae Pathogens <i>Fusarium oxysporum</i> f. sp. <i>raphani</i> and <i>Fusarium oxysporum</i> f. sp. <i>rapae</i> . Molecular Plant-Microbe Interactions, 2021, 34, 1316-1319.	2.6	6
15	Complete Genome Sequence of Pseudomonas amygdali pv. tabaci Strain 6605, a Causal Agent of Tobacco Wildfire Disease. Microbiology Resource Announcements, 2021, 10, e0040521.	0.6	2
16	WIND transcription factors orchestrate woundâ€induced callus formation, vascular reconnection and defense response in Arabidopsis. New Phytologist, 2021, 232, 734-752.	7.3	32
17	The <i>Phtheirospermum japonicum</i> isopentenyltransferase PjIPT1a regulates host cytokinin responses in Arabidopsis. New Phytologist, 2021, 232, 1582-1590.	7.3	8
18	How to resist parasitic plants: pre- and post-attachment strategies. Current Opinion in Plant Biology, 2021, 62, 102004.	7.1	19

#	Article	IF	CITATIONS
19	The Conserved Colletotrichum spp. Effector Candidate CEC3 Induces Nuclear Expansion and Cell Death in Plants. Frontiers in Microbiology, 2021, 12, 682155.	3.5	12
20	Nitrogen Deficiency-induced Bacterial Community Shifts in Soybean Roots. Microbes and Environments, 2021, 36, n/a.	1.6	3
21	Three-dimensional reconstructions of haustoria in two parasitic plant species in the Orobanchaceae. Plant Physiology, 2021, 185, 1429-1442.	4.8	17
22	Subtilase activity in intrusive cells mediates haustorium maturation in parasitic plants. Plant Physiology, 2021, 185, 1381-1394.	4.8	21
23	Fungal effector SIB1 of Colletotrichum orbiculare has unique structural features and can suppress plant immunity in Nicotiana benthamiana. Journal of Biological Chemistry, 2021, 297, 101370.	3.4	7
24	Oxicam-type non-steroidal anti-inflammatory drugs inhibit NPR1-mediated salicylic acid pathway. Nature Communications, 2021, 12, 7303.	12.8	16
25	ææ‰©ã«ãŠãiā,<ã,ノン化å°ç‰©ã®èªè²æ©Ÿæ§‹. Kagaku To Seibutsu, 2021, 59, 219-221.	0.0	0
26	Exogenous Treatment with Clutamate Induces Immune Responses in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2020, 33, 474-487.	2.6	46
27	AtNOT1 Is a Novel Regulator of Gene Expression during Pollen Development. Plant and Cell Physiology, 2020, 61, 712-721.	3.1	9
28	Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases. Science, 2020, 369, 698-702.	12.6	108
29	Common Mechanisms of Developmental Reprogramming in Plants—Lessons From Regeneration, Symbiosis, and Parasitism. Frontiers in Plant Science, 2020, 11, 1084.	3.6	12
30	Host-parasite tissue adhesion by a secreted type of β-1,4-glucanase in the parasitic plant Phtheirospermum japonicum. Communications Biology, 2020, 3, 407.	4.4	29
31	Ethylene signaling mediates host invasion by parasitic plants. Science Advances, 2020, 6, .	10.3	37
32	Quinone perception in plants via leucine-rich-repeat receptor-like kinases. Nature, 2020, 587, 92-97.	27.8	77
33	Arabidopsis SMN2/HEN2, Encoding DEAD-Box RNA Helicase, Governs Proper Expression of the Resistance Gene SMN1/RPS6 and Is Involved in Dwarf, Autoimmune Phenotypes of mekk1 and mpk4 Mutants. Plant and Cell Physiology, 2020, 61, 1507-1516.	3.1	21
34	Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase agricultural crop yield. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14552-14560.	7.1	77
35	Short-Term Magnesium Deficiency Triggers Nutrient Retranslocation in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 563.	3.6	15
36	Auxin transport network underlies xylem bridge formation between the hemi-parasitic plant <i>Phtheirospermum japonicum</i> and host Arabidopsis. Development (Cambridge), 2020, 147, .	2.5	31

KEN SHIRASU

#	Article	IF	CITATIONS
37	Haustorium Inducing Factors for Parasitic Orobanchaceae. Frontiers in Plant Science, 2019, 10, 1056.	3.6	49
38	High-Quality Draft Genome Sequence of Fusarium oxysporum f. sp. <i>cubense</i> Strain 160527, a Causal Agent of Panama Disease. Microbiology Resource Announcements, 2019, 8, .	0.6	18
39	Editorial overview: Biotic interactions – Hosts, microbes and a changing environment. Current Opinion in Plant Biology, 2019, 50, iv-vi.	7.1	0
40	CRABS CLAW and SUPERMAN Coordinate Hormone-, Stress-, and Metabolic-Related Gene Expression During Arabidopsis Stamen Development. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	5
41	Striga. Current Biology, 2019, 29, R1064-R1065.	3.9	2
42	Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism. Current Biology, 2019, 29, 3041-3052.e4.	3.9	109
43	Colletotrichum shisoi sp. nov., an anthracnose pathogen of Perilla frutescens in Japan: molecular phylogenetic, morphological and genomic evidence. Scientific Reports, 2019, 9, 13349.	3.3	15
44	Plant Immune Responses to Parasitic Nematodes. Frontiers in Plant Science, 2019, 10, 1165.	3.6	113
45	The Structural Integrity of Lignin Is Crucial for Resistance against <i>Striga hermonthica</i> Parasitism in Rice. Plant Physiology, 2019, 179, 1796-1809.	4.8	60
46	Genomic Plasticity Mediated by Transposable Elements in the Plant Pathogenic Fungus Colletotrichum higginsianum. Genome Biology and Evolution, 2019, 11, 1487-1500.	2.5	47
47	Genome Sequence Resources for Four Phytopathogenic Fungi from the <i>Colletotrichum orbiculare</i> Species Complex. Molecular Plant-Microbe Interactions, 2019, 32, 1088-1090.	2.6	22
48	Abscisic acidâ€dependent histone demethylation during postgermination growth arrest in <i>Arabidopsis</i> . Plant, Cell and Environment, 2019, 42, 2198-2214.	5.7	46
49	An artificial metalloenzyme biosensor can detect ethylene gas in fruits and Arabidopsis leaves. Nature Communications, 2019, 10, 5746.	12.8	62
50	Disruption of the MAMP-Induced MEKK1-MKK1/MKK2-MPK4 Pathway Activates the TNL Immune Receptor SMN1/RPS6. Plant and Cell Physiology, 2019, 60, 778-787.	3.1	37
51	Establishment of a selection marker recycling system for sequential transformation of the plantâ€pathogenic fungus <i>Colletotrichum orbiculare</i> . Molecular Plant Pathology, 2019, 20, 447-459.	4.2	17
52	Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector― and PAMPâ€ŧriggered immunity in plants. New Phytologist, 2019, 221, 2160-2175.	7.3	102
53	Method for Assessing Virulence of Colletotrichum higginsianum on Arabidopsis thaliana Leaves Using Automated Lesion Area Detection and Measurement. Bio-protocol, 2019, 9, e3434.	0.4	5
54	Host lignin composition affects haustorium induction in the parasitic plants <i>Phtheirospermum japonicum</i> and <i>Striga hermonthica</i> . New Phytologist, 2018, 218, 710-723.	7.3	64

#	Article	IF	CITATIONS
55	Identification of novel sesterterpenes by genome mining of phytopathogenic fungi Phoma and Colletotrichum sp Tetrahedron Letters, 2018, 59, 1136-1139.	1.4	17
56	Regulation of floral meristem activity through the interaction of AGAMOUS, SUPERMAN, and CLAVATA3 in Arabidopsis. Plant Reproduction, 2018, 31, 89-105.	2.2	33
57	Transcriptomic and Metabolomic Reprogramming from Roots to Haustoria in the Parasitic Plant, Thesium chinense. Plant and Cell Physiology, 2018, 59, 729-738.	3.1	27
58	Same tune, different song — cytokinins as virulence factors in plant–pathogen interactions?. Current Opinion in Plant Biology, 2018, 44, 82-87.	7.1	50
59	Inappropriate Expression of an NLP Effector in <i>Colletotrichum orbiculare</i> Impairs Infection on Cucurbitaceae Cultivars via Plant Recognition of the C-Terminal Region. Molecular Plant-Microbe Interactions, 2018, 31, 101-111.	2.6	34
60	A downy mildew effector evades recognition by polymorphism of expression and subcellular localization. Nature Communications, 2018, 9, 5192.	12.8	40
61	Host recognition and infection mechanism by parasitic Orobanchaceae plants. Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 2018, 84, 267-274.	0.1	0
62	A High-Throughput Chemical Screening Method for Inhibitors and Potentiators of Hypersensitive Cell Death Using Suspension Cell Culture of Arabidopsis thaliana. Methods in Molecular Biology, 2018, 1795, 39-47.	0.9	3
63	High Impact Gene Discovery: Simple Strand-Specific mRNA Library Construction and Differential Regulatory Analysis Based on Gene Co-Expression Network. Methods in Molecular Biology, 2018, 1830, 163-189.	0.9	24
64	Induced cell fate transitions at multiple cell layers configure haustorium development in parasitic plants. Development (Cambridge), 2018, 145, .	2.5	29
65	High-Quality Genome Sequence of the Root-Knot Nematode Meloidogyne arenaria Genotype A2-O. Genome Announcements, 2018, 6, .	0.8	32
66	Regulation of Strigolactone Biosynthesis by Gibberellin Signaling. Plant Physiology, 2017, 174, 1250-1259.	4.8	138
67	Quinone oxidoreductase 2 is involved in haustorium development of the parasitic plant <i>Phtheirospermum japonicum</i> . Plant Signaling and Behavior, 2017, 12, e1319029.	2.4	20
68	Interspecies hormonal control of host root morphology by parasitic plants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5283-5288.	7.1	82
69	A calmodulinâ€like protein regulates plasmodesmal closure during bacterial immune responses. New Phytologist, 2017, 215, 77-84.	7.3	90
70	Strigolactones in Plant Interactions with Beneficial and Detrimental Organisms: The Yin and Yang. Trends in Plant Science, 2017, 22, 527-537.	8.8	173
71	Markers to differentiate species of anthracnose fungi identify Colletotrichum fructicola as the predominant virulent species in strawberry plants in Chiba Prefecture of Japan. Journal of General Plant Pathology, 2017, 83, 14-22.	1.0	33
72	Draft Genome Assembly of <i>Colletotrichum chlorophyti</i> , a Pathogen of Herbaceous Plants. Genome Announcements, 2017, 5, .	0.8	18

#	Article	IF	CITATIONS
73	The GYF domain protein PSIG1 dampens the induction of cell death during plant-pathogen interactions. PLoS Genetics, 2017, 13, e1007037.	3.5	21
74	Haustorium Induction Assay of the Parasitic Plant Phtheirospermum japonicum. Bio-protocol, 2017, 7, e2260.	0.4	2
75	Molecular Parasitic Plant–Host Interactions. PLoS Pathogens, 2016, 12, e1005978.	4.7	32
76	Leucine zipper motif in RRS1 is crucial for the regulation of Arabidopsis dual resistance protein complex RPS4/RRS1. Scientific Reports, 2016, 6, 18702.	3.3	13
77	The Haustorium, a Specialized Invasive Organ in Parasitic Plants. Annual Review of Plant Biology, 2016, 67, 643-667.	18.7	223
78	The <i>Arabidopsis</i> <scp>CERK</scp> 1â€essociated kinase <scp>PBL</scp> 27 connects chitin perception to <scp>MAPK</scp> activation. EMBO Journal, 2016, 35, 2468-2483.	7.8	202
79	Local Auxin Biosynthesis Mediated by a YUCCA Flavin Monooxygenase Regulates Haustorium Development in the Parasitic Plant <i>Phtheirospermum japonicum</i> . Plant Cell, 2016, 28, 1795-1814.	6.6	102
80	Haustorial Hairs Are Specialized Root Hairs That Support Parasitism in the Facultative Parasitic Plant <i>Phtheirospermum japonicum</i> . Plant Physiology, 2016, 170, 1492-1503.	4.8	72
81	Genus-Wide Comparative Genome Analyses of <i>Colletotrichum</i> Species Reveal Specific Gene Family Losses and Gains during Adaptation to Specific Infection Lifestyles. Genome Biology and Evolution, 2016, 8, 1467-1481.	2.5	69
82	SGT1 contributes to maintaining protein levels of MEK2DD to facilitate hypersensitive response-like cell death in Nicotiana benthamiana. Physiological and Molecular Plant Pathology, 2016, 94, 47-52.	2.5	4
83	The <i>WRKY45</i> -Dependent Signaling Pathway Is Required For Resistance against <i>Striga hermonthica</i> Parasitism. Plant Physiology, 2015, 168, 1152-1163.	4.8	51
84	Transcriptomics exposes the uniqueness of parasitic plants. Briefings in Functional Genomics, 2015, 14, 275-282.	2.7	25
85	Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science, 2015, 349, 540-543.	12.6	255
86	Regulation of the NADPH Oxidase RBOHD During Plant Immunity. Plant and Cell Physiology, 2015, 56, 1472-1480.	3.1	480
87	WRKY Transcription Factors Phosphorylated by MAPK Regulate a Plant Immune NADPH Oxidase in <i>Nicotiana benthamiana</i> . Plant Cell, 2015, 27, 2645-2663.	6.6	223
88	Plant cells under siege: plant immune system versus pathogen effectors. Current Opinion in Plant Biology, 2015, 28, 1-8.	7.1	135
89	Hyaloperonospora arabidopsidis (Downy Mildew) infection Assay in Arabidopsis. Bio-protocol, 2015, 5, .	0.4	11
90	Quality control of plant peroxisomes in organ specific manner via autophagy. Journal of Cell Science, 2014, 127, 1161-8.	2.0	105

#	Article	IF	CITATIONS
91	Expression Profiling during Arabidopsis/Downy Mildew Interaction Reveals a Highly-Expressed Effector That Attenuates Responses to Salicylic Acid. PLoS Pathogens, 2014, 10, e1004443.	4.7	117
92	Analysis of Differential Expression Patterns of mRNA and Protein During Cold-acclimation and De-acclimation in Arabidopsis. Molecular and Cellular Proteomics, 2014, 13, 3602-3611.	3.8	78
93	Comprehensive analysis of protein interactions between JAZ proteins and bHLH transcription factors that negatively regulate jasmonate signaling. Plant Signaling and Behavior, 2014, 9, e27639.	2.4	28
94	<i>Arabidopsis</i> dual resistance proteins, both RPS4 and RRS1, are required for resistance to bacterial wilt in transgenic <i>Brassica</i> crops. Plant Signaling and Behavior, 2014, 9, e29130.	2.4	33
95	Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF–TDR signalling. Nature Communications, 2014, 5, 3504.	12.8	195
96	Stitching together the Multiple Dimensions of Autophagy Using Metabolomics and Transcriptomics Reveals Impacts on Metabolism, Development, and Plant Responses to the Environment in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 1857-1877.	6.6	134
97	Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell, 2014, 54, 43-55.	9.7	744
98	The Genomics of Colletotrichum. , 2014, , 69-102.		38
99	The Activated SA and JA Signaling Pathways Have an Influence on flg22-Triggered Oxidative Burst and Callose Deposition. PLoS ONE, 2014, 9, e88951.	2.5	135
100	The genus <i><scp>S</scp>triga</i> : a witch profile. Molecular Plant Pathology, 2013, 14, 861-869.	4.2	126
101	Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of <i>Colletotrichum</i> fungi. New Phytologist, 2013, 197, 1236-1249.	7.3	332
102	Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis. Plant Physiology, 2013, 163, 291-304.	4.8	178
103	A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses. Nature Communications, 2013, 4, 2215.	12.8	101
104	The RXLR motif of oomycete effectors is not a sufficient element for binding to phosphatidylinositol monophosphates. Plant Signaling and Behavior, 2013, 8, e23865.	2.4	17
105	Glutathione and tryptophan metabolism are required for <i>Arabidopsis</i> immunity during the hypersensitive response to hemibiotrophs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9589-9594.	7.1	121
106	Breaking restricted taxonomic functionality by dual <i>resistance</i> genes. Plant Signaling and Behavior, 2013, 8, e24244.	2.4	18
107	The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation. Scientific Reports, 2013, 3, 2866.	3.3	58
108	Interfamily Transfer of Dual NB-LRR Genes Confers Resistance to Multiple Pathogens. PLoS ONE, 2013, 8, e55954.	2.5	93

#	Article	IF	CITATIONS
109	Novel Plant Immune-Priming Compounds Identified via High-Throughput Chemical Screening Target Salicylic Acid Glucosyltransferases in <i>Arabidopsis</i> À Â. Plant Cell, 2012, 24, 3795-3804.	6.6	158
110	Sulfonamides identified as plant immune-priming compounds in high-throughput chemical screening increase disease resistance in Arabidopsis thaliana. Frontiers in Plant Science, 2012, 3, 245.	3.6	68
111	Sequence Divergent RXLR Effectors Share a Structural Fold Conserved across Plant Pathogenic Oomycete Species. PLoS Pathogens, 2012, 8, e1002400.	4.7	153
112	The Ubiquitin Ligase PUB22 Targets a Subunit of the Exocyst Complex Required for PAMP-Triggered Responses in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4703-4716.	6.6	205
113	Isolation and characterization of the plant immune-priming compounds Imprimatin B3 and -B4, potentiators of disease resistance in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2012, 7, 1526-1528.	2.4	10
114	ImprimatinC1, a novel plant immune-priming compound, functions as a partial agonist of salicylic acid. Scientific Reports, 2012, 2, 705.	3.3	22
115	Shotguns in the Front Line: Phosphoproteomics in Plants. Plant and Cell Physiology, 2012, 53, 118-124.	3.1	55
116	Imprimatins A and B. Plant Signaling and Behavior, 2012, 7, 1715-1717.	2.4	10
117	A Chemical Biology Approach Reveals an Opposite Action between Thermospermine and Auxin in Xylem Development in Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 635-645.	3.1	41
118	A possible involvement of autophagy in amyloplast degradation in columella cells during hydrotropic response of Arabidopsis roots. Planta, 2012, 236, 999-1012.	3.2	37
119	Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 2012, 44, 1060-1065.	21.4	840
120	The <scp><scp>D3</scp> F</scp> â€box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytologist, 2012, 196, 1208-1216.	7.3	134
121	Front-runners in plant–microbe interactions. Current Opinion in Plant Biology, 2012, 15, 345-348.	7.1	9
122	Plants that attack plants: molecular elucidation of plant parasitism. Current Opinion in Plant Biology, 2012, 15, 708-713.	7.1	45
123	Diuretics Prime Plant Immunity in Arabidopsis thaliana. PLoS ONE, 2012, 7, e48443.	2.5	21
124	Development of a model system comprising Populus as a model tree and Colletotrichum gloeosporioides as a model pathogen for studying host^ ^#8211;pathogen interactions. Plant Biotechnology, 2012, 29, 511-514.	1.0	4
125	Thermospermine suppresses auxin-inducible xylem differentiation in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2012, 7, 937-939.	2.4	13
126	The HSP90 complex of plants. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 689-697.	4.1	132

#	Article	IF	CITATIONS
127	The main auxin biosynthesis pathway in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18512-18517.	7.1	827
128	Agrobacterium rhizogenes-Mediated Transformation of the Parasitic Plant Phtheirospermum japonicum. PLoS ONE, 2011, 6, e25802.	2.5	70
129	Title is missing!. Kagaku To Seibutsu, 2011, 49, 518-519.	0.0	0

130 å‹•æ**ç**䩌...±é€šã®å...ç−«ã,»ãf³ã,µãf¼ã®å^¶å¾¡ã«åfãã,¿ãf³ãfʿã,¯è³ªè**¤**å•̂体 立体æ§‹é€è§£æžã•ã,‰æ©Ÿè∯,½aã«è¿«ã›. Kagaku

131	12-Oxo-Phytodienoic Acid–Glutathione Conjugate is Transported into the Vacuole in Arabidopsis. Plant and Cell Physiology, 2011, 52, 205-209.	3.1	45
132	RanGAP2 Mediates Nucleocytoplasmic Partitioning of the NB-LRR Immune Receptor Rx in the Solanaceae, Thereby Dictating Rx Function Â. Plant Cell, 2011, 22, 4176-4194.	6.6	133
133	Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14682-14687.	7.1	141
134	Ubiquitination in plant immunity. Current Opinion in Plant Biology, 2010, 13, 402-408.	7.1	158
135	NLR sensors meet at the SGT1–HSP90 crossroad. Trends in Biochemical Sciences, 2010, 35, 199-207.	7.5	160
136	A full-length enriched cDNA library and expressed sequence tag analysis of the parasitic weed, Striga hermonthica. BMC Plant Biology, 2010, 10, 55.	3.6	34
137	The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant Journal, 2010, 64, no-no.	5.7	121
138	Large-Scale Comparative Phosphoproteomics Identifies Conserved Phosphorylation Sites in Plants Â. Plant Physiology, 2010, 153, 1161-1174.	4.8	361
139	Structural Basis for Assembly of Hsp90-Sgt1-CHORD Protein Complexes: Implications for Chaperoning of NLR Innate Immunity Receptors. Molecular Cell, 2010, 39, 269-281.	9.7	108
140	Horizontal Gene Transfer by the Parasitic Plant <i>Striga hermonthica</i> . Science, 2010, 328, 1128-1128.	12.6	139
141	<i>RRS1</i> and <i>RPS4</i> provide a dual <i>Resistanceâ€</i> gene system against fungal and bacterial pathogens. Plant Journal, 2009, 60, 218-226.	5.7	346
142	Multiple layers of incompatibility to the parasitic witchweed, <i>Striga hermonthica</i> . New Phytologist, 2009, 183, 180-189.	7.3	103
143	The HSP90-SGT1 Chaperone Complex for NLR Immune Sensors. Annual Review of Plant Biology, 2009, 60, 139-164.	18.7	333
144	Autophagy Negatively Regulates Cell Death by Controlling NPR1-Dependent Salicylic Acid Signaling during Senescence and the Innate Immune Response in <i>Arabidopsis</i> A Â. Plant Cell, 2009, 21, 2914-2927.	6.6	531

#	Article	IF	CITATIONS
145	Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. EMBO Journal, 2008, 27, 2789-2798.	7.8	104
146	Structural and functional analysis of SGT1–HSP90 core complex required for innate immunity in plants. EMBO Reports, 2008, 9, 1209-1215.	4.5	59
147	Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455, 195-200.	27.8	1,765
148	Negative Regulation of PAMP-Triggered Immunity by an E3 Ubiquitin Ligase Triplet in Arabidopsis. Current Biology, 2008, 18, 1396-1401.	3.9	241
149	Largeâ€scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in <i>Arabidopsis</i> . Molecular Systems Biology, 2008, 4, 193.	7.2	347
150	RAR1 and HSP90 Form a Complex with Rac/Rop GTPase and Function in Innate-Immune Responses in Rice. Plant Cell, 2008, 19, 4035-4045.	6.6	141
151	RACK1 Functions in Rice Innate Immunity by Interacting with the Rac1 Immune Complex Â. Plant Cell, 2008, 20, 2265-2279.	6.6	183
152	Structural and Functional Analysis of SGT1 Reveals That Its Interaction with HSP90 Is Required for the Accumulation of Rx, an R Protein Involved in Plant Immunity. Plant Cell, 2007, 19, 3791-3804.	6.6	168
153	CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19613-19618.	7.1	1,225
154	TPR-Mediated Self-Association of Plant SGT1. Biochemistry, 2007, 46, 11331-11341.	2.5	31
155	Biochemical Characterization of RAR1 Cysteine- and Histidine-Rich Domains (CHORDs):Â A Novel Class of Zinc-Dependent Proteinâ^'Protein Interaction Modulesâ€. Biochemistry, 2007, 46, 1612-1623.	2.5	17
156	Multidimensional Protein Identification Technology (MudPIT) Analysis of Ubiquitinated Proteins in Plants. Molecular and Cellular Proteomics, 2007, 6, 601-610.	3.8	171
157	MEKK1 Is Required for MPK4 Activation and Regulates Tissue-specific and Temperature-dependent Cell Death in Arabidopsis. Journal of Biological Chemistry, 2006, 281, 36969-36976.	3.4	271
158	Role of SGT1 in resistance protein accumulation in plant immunity. EMBO Journal, 2006, 25, 2007-2016.	7.8	226
159	Loss of NECROTIC SPOTTED LESIONS 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Molecular Biology, 2006, 62, 29-42.	3.9	68
160	The U-Box Protein CMPG1 Is Required for Efficient Activation of Defense Mechanisms Triggered by Multiple Resistance Genes in Tobacco and Tomato. Plant Cell, 2006, 18, 1067-1083.	6.6	195
161	A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant Journal, 2005, 43, 873-888.	5.7	164
162	Virus-Induced Gene Silencing-Based Functional Characterization of Genes Associated with Powdery Mildew Resistance in Barley. Plant Physiology, 2005, 138, 2155-2164.	4.8	245

#	Article	IF	CITATIONS
163	The arms race continues: battle strategies between plants and fungal pathogens. Current Opinion in Microbiology, 2005, 8, 399-404.	5.1	109
164	CHPA, a Cysteine- and Histidine-Rich-Domain-Containing Protein, Contributes to Maintenance of the Diploid State in Aspergillus nidulans. Eukaryotic Cell, 2004, 3, 984-991.	3.4	11
165	RAR1 Positively Controls Steady State Levels of Barley MLA Resistance Proteins and Enables Sufficient MLA6 Accumulation for Effective Resistance. Plant Cell, 2004, 16, 3480-3495.	6.6	252
166	Role of ubiquitination in the regulation of plant defence against pathogens. Current Opinion in Plant Biology, 2003, 6, 307-311.	7.1	154
167	The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nature Reviews Genetics, 2003, 4, 948-958.	16.3	208
168	Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO Journal, 2003, 22, 5679-5689.	7.8	365
169	Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends in Plant Science, 2003, 8, 252-258.	8.8	198
170	Recognition Specificity and RAR1/SGT1 Dependence in Barley Mla Disease Resistance Genes to the Powdery Mildew Fungus. Plant Cell, 2003, 15, 732-744.	6.6	225
171	HSP90 interacts with RAR1 and SCT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11777-11782.	7.1	440
172	RAR1 and NDR1 Contribute Quantitatively to Disease Resistance in Arabidopsis, and Their Relative Contributions Are Dependent on the R Gene Assayed. Plant Cell, 2002, 14, 1005-1015.	6.6	218
173	Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10865-10869.	7.1	385
174	The RAR1 Interactor SGT1, an Essential Component of R Gene-Triggered Disease Resistance. Science, 2002, 295, 2073-2076.	12.6	574
175	"To degrade or not to degrade?â€â€"the emerging question in plant disease resistance. Physiological and Molecular Plant Pathology, 2002, 61, 73-76.	2.5	3
176	Arabidopsis RAR1 Exerts Rate-Limiting Control of R Gene–Mediated Defenses against Multiple Pathogens. Plant Cell, 2002, 14, 979-992.	6.6	197
177	Resistance and susceptibility of plants to fungal pathogens. Transgenic Research, 2002, 11, 567-582.	2.4	19
178	The U-box protein family in plants. Trends in Plant Science, 2001, 6, 354-358.	8.8	234
179	Knowledge elicitation in plant–microbe interactions. Trends in Plant Science, 2001, 6, 279.	8.8	1
180	Regulators of cell death in disease resistance. Plant Molecular Biology, 2000, 44, 371-385.	3.9	148

#	Article	IF	CITATIONS
181	A Contiguous 66-kb Barley DNA Sequence Provides Evidence for Reversible Genome Expansion. Genome Research, 2000, 10, 908-915.	5.5	285
182	Regulators of cell death in disease resistance. , 2000, , 127-141.		0
183	Cell-autonomous complementation ofmloresistance using a biolistic transient expression system. Plant Journal, 1999, 17, 293-299.	5.7	110
184	A Novel Class of Eukaryotic Zinc-Binding Proteins Is Required for Disease Resistance Signaling in Barley and Development in C. elegans. Cell, 1999, 99, 355-366.	28.9	341
185	Chromosome landing at the barley Rar1 locus. Molecular Genetics and Genomics, 1998, 260, 92-101.	2.4	36
186	Salicylic Acid Potentiates an Agonist-Dependent Gain Control That Amplifies Pathogen Signals in the Activation of Defense Mechanisms. Plant Cell, 1997, 9, 261.	6.6	7
187	Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms Plant Cell, 1997, 9, 261-270.	6.6	557
188	VirB2 is a processed pilin-like protein encoded by the Agrobacterium tumefaciens Ti plasmid. Journal of Bacteriology, 1996, 178, 5706-5711.	2.2	63
189	Signal transduction in plant immunity. Current Opinion in Immunology, 1996, 8, 3-7.	5.5	28
190	Regulation, expression and function of a new basic chitinase gene in rice (Oryza sativa L.). Plant Molecular Biology, 1996, 30, 387-401.	3.9	66
191	The product of the virB4 gene of Agrobacterium tumefaciens promotes accumulation of VirB3 protein. Journal of Bacteriology, 1994, 176, 5255-5261.	2.2	77
192	An inner-membrane-associated virulence protein essential for T-DNA transfer from Agrobacterium tumefaciens to plants exhibits ATPase activity and similarities to conjugative transfer genes. Molecular Microbiology, 1994, 11, 581-588.	2.5	83
193	Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure onAgrobacterium tumefaciens. FEMS Microbiology Letters, 1993, 111, 287-293.	1.8	110
194	ThevirBoperon of theAgrobacterium tumefaciensvirulence regulon has sequence similarities to B, Cand D open reading frames downstream of the pertussis toxin-operon and to the DNA transfer-operons of broad-host-range conjugative plasmids. Nucleic Acids Research, 1993, 21, 353-354.	14.5	41
195	VirB4 is an Inner Membrane-Associated Protein Essential for T-DNA Transfer from Agrobacterium Tumefaciens to Plants. Current Plant Science and Biotechnology in Agriculture, 1993, , 103-107.	0.0	1
196	Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens. FEMS Microbiology Letters, 1993, 111, 287-293.	1.8	4
197	Characterization of the virB operon of an Agrobacterium tumefaciens Ti plasmid: nucleotide sequence and protein analysis. Molecular Microbiology, 1990, 4, 1153-1163.	2.5	82
198	Molecular characterization of the vir regulon of Agrobacterium tumefaciens: Complete nucleotide sequence and gene organization of the 28.63-kbp regulon cloned as a single unit. Plasmid, 1990, 23, 85-106.	1.4	112

#	Article	IF	CITATIONS
199	Plant Mitogen-Activated Protein Kinase Cascades in Signaling Crosstalk. , 0, , 23-42.		3