
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2561768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 2015, 18, 965-977.	7.1	2,340
2	A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells. Science, 2012, 336, 86-90.	6.0	2,084
3	DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.	13.7	1,872
4	U-Net: deep learning for cell counting, detection, and morphometry. Nature Methods, 2019, 16, 67-70.	9.0	1,242
5	Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nature Neuroscience, 2013, 16, 273-280.	7.1	1,121
6	Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nature Reviews Neuroscience, 2014, 15, 300-312.	4.9	1,069
7	Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nature Medicine, 2016, 22, 586-597.	15.2	987
8	Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurology, The, 2020, 19, 919-929.	4.9	957
9	Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nature Neuroscience, 2007, 10, 1544-1553.	7.1	910
10	Origin, fate and dynamics of macrophages at central nervous system interfaces. Nature Immunology, 2016, 17, 797-805.	7.0	872
11	Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature, 2019, 566, 388-392.	13.7	853
12	Microglia Biology: One Century of Evolving Concepts. Cell, 2019, 179, 292-311.	13.5	772
13	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.	13.5	702
14	Microglial control of astrocytes in response to microbial metabolites. Nature, 2018, 557, 724-728.	13.7	693
15	Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nature Medicine, 2005, 11, 146-152.	15.2	667
16	Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nature Neuroscience, 2011, 14, 1227-1235.	7.1	606
17	Innate immune memory in the brain shapes neurological disease hallmarks. Nature, 2018, 556, 332-338.	13.7	605
18	Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science, 2019, 363, .	6.0	583

#	Article	IF	CITATIONS
19	A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nature Neuroscience, 2013, 16, 1618-1626.	7.1	574
20	Targeting gene-modified hematopoietic cells to the central nervous system: Use of green fluorescent protein uncovers microglial engraftment. Nature Medicine, 2001, 7, 1356-1361.	15.2	567
21	p62 Is a Common Component of Cytoplasmic Inclusions in Protein Aggregation Diseases. American Journal of Pathology, 2002, 160, 255-263.	1.9	550
22	Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System. Immunity, 2015, 43, 92-106.	6.6	506
23	The role of peripheral immune cells in the CNS in steady state and disease. Nature Neuroscience, 2017, 20, 136-144.	7.1	468
24	A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nature Neuroscience, 2017, 20, 793-803.	7.1	446
25	Microglia Heterogeneity in the Single-Cell Era. Cell Reports, 2020, 30, 1271-1281.	2.9	421
26	DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nature Genetics, 2009, 41, 1207-1215.	9.4	412
27	CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain, 2009, 132, 2487-2500.	3.7	393
28	Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathologica, 2017, 134, 441-458.	3.9	375
29	Progressive replacement of embryo-derived cardiac macrophages with age. Journal of Experimental Medicine, 2014, 211, 2151-2158.	4.2	374
30	Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer's disease. Nature Communications, 2020, 11, 6129.	5.8	371
31	Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism. Cell, 2020, 180, 1067-1080.e16.	13.5	367
32	5′-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nature Medicine, 2008, 14, 1256-1263.	15.2	353
33	Distinct and Nonredundant In Vivo Functions of IFNAR on Myeloid Cells Limit Autoimmunity in the Central Nervous System. Immunity, 2008, 28, 675-686.	6.6	352
34	TREM2-Transduced Myeloid Precursors Mediate Nervous Tissue Debris Clearance and Facilitate Recovery in an Animal Model of Multiple Sclerosis. PLoS Medicine, 2007, 4, e124.	3.9	340
35	Ontogeny and homeostasis of CNS myeloid cells. Nature Immunology, 2017, 18, 385-392.	7.0	334
36	On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nature Medicine, 2016, 22, 945-951.	15.2	333

#	Article	IF	CITATIONS
37	Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. Journal of Clinical Investigation, 2006, 116, 456-464.	3.9	329
38	Microglia in Central Nervous System Inflammation and Multiple Sclerosis Pathology. Trends in Molecular Medicine, 2019, 25, 112-123.	3.5	318
39	Origin of Microglia: Current Concepts and Past Controversies. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020537.	2.3	298
40	Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nature Neuroscience, 2019, 22, 2098-2110.	7.1	296
41	Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nature Genetics, 2007, 39, 969-976.	9.4	294
42	Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program. Cell, 2019, 179, 1609-1622.e16.	13.5	292
43	Distinct and Non-Redundant Roles of Microglia and Myeloid Subsets in Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2011, 31, 11159-11171.	1.7	286
44	Factors regulating microglia activation. Frontiers in Cellular Neuroscience, 2013, 7, 44.	1.8	286
45	Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nature Immunology, 2016, 17, 159-168.	7.0	275
46	Platelet GPlbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nature Medicine, 2019, 25, 641-655.	15.2	259
47	Endothelial CCR2 Signaling Induced by Colon Carcinoma Cells Enables Extravasation via the JAK2-Stat5 and p38MAPK Pathway. Cancer Cell, 2012, 22, 91-105.	7.7	256
48	Macrophages at CNS interfaces: ontogeny and function in health andÂdisease. Nature Reviews Neuroscience, 2019, 20, 547-562.	4.9	250
49	Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nature Neuroscience, 2018, 21, 541-551.	7.1	249
50	Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain, 2021, 144, 1263-1276.	3.7	245
51	Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage. Nature Medicine, 2014, 20, 648-654.	15.2	241
52	Sarcoma classification by DNA methylation profiling. Nature Communications, 2021, 12, 498.	5.8	237
53	Microglia and Central Nervous System–Associated Macrophages—From Origin to Disease Modulation. Annual Review of Immunology, 2021, 39, 251-277.	9.5	228
54	Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. Journal of Experimental Medicine, 2016, 213, 1163-1174.	4.2	224

#	Article	IF	CITATIONS
55	Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nature Communications, 2019, 10, 2541.	5.8	218
56	Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nature Medicine, 2018, 24, 282-291.	15.2	216
57	Microglia in steady state. Journal of Clinical Investigation, 2017, 127, 3201-3209.	3.9	212
58	Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity, 2021, 54, 1594-1610.e11.	6.6	210
59	Transepithelial prion transport by M cells. Nature Medicine, 2001, 7, 976-977.	15.2	209
60	TAK1 Suppresses a NEMO-Dependent but NF-κB-Independent Pathway to Liver Cancer. Cancer Cell, 2010, 17, 481-496.	7.7	207
61	Microglia in the CNS: Immigrants from another world. Glia, 2011, 59, 177-187.	2.5	203
62	Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature, 2003, 425, 957-962.	13.7	195
63	The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathologica, 2013, 125, 395-412.	3.9	192
64	Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Letters, 2012, 325, 42-53.	3.2	191
65	Microglia: Immune and non-immune functions. Immunity, 2021, 54, 2194-2208.	6.6	191
66	Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathologica, 2018, 136, 273-291.	3.9	190
67	Novel Hexb-based tools for studying microglia in the CNS. Nature Immunology, 2020, 21, 802-815.	7.0	186
68	Dendritic Cells Ameliorate Autoimmunity in the CNS by Controlling the Homeostasis of PD-1 Receptor+ Regulatory T Cells. Immunity, 2012, 37, 264-275.	6.6	184
69	Chronic Lymphocytic Inflammation Specifies the Organ Tropism of Prions. Science, 2005, 307, 1107-1110.	6.0	183
70	<scp>USP</scp> 18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO Journal, 2015, 34, 1612-1629.	3.5	178
71	Essential Role of Ubiquitin-Specific Protease 8 for Receptor Tyrosine Kinase Stability and Endocytic Trafficking In Vivo. Molecular and Cellular Biology, 2007, 27, 5029-5039.	1.1	174
72	Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metabolism, 2021, 33, 2260-2276.e7.	7.2	173

#	Article	IF	CITATIONS
73	Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain, 2006, 129, 2394-2403.	3.7	169
74	Role of Microglia in CNS Autoimmunity. Clinical and Developmental Immunology, 2013, 2013, 1-8.	3.3	166
75	Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nature Communications, 2018, 9, 5206.	5.8	166
76	Lack of Neuronal IFN-β-IFNAR Causes Lewy Body- and Parkinson's Disease-like Dementia. Cell, 2015, 163, 324-339.	13.5	160
77	Mef2C restrains microglial inflammatory response and is lost in brain ageing inÂan IFN-I-dependent manner. Nature Communications, 2017, 8, 717.	5.8	157
78	Microglia as modulators of cognition and neuropsychiatric disorders. Clia, 2013, 61, 62-70.	2.5	152
79	A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation. Nature Communications, 2018, 9, 2036.	5.8	152
80	A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. Journal of Experimental Medicine, 2012, 209, 2165-2181.	4.2	151
81	Interleukin 18–independent engagement of interleukin 18 receptor-α is required for autoimmune inflammation. Nature Immunology, 2006, 7, 946-953.	7.0	149
82	Tickets to the brain: Role of CCR2 and CX3CR1 in myeloid cell entry in the CNS. Journal of Neuroimmunology, 2010, 224, 80-84.	1.1	149
83	Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nature Neuroscience, 2020, 23, 676-689.	7.1	148
84	Longâ€ŧerm seizure outcome in 211 patients with focal cortical dysplasia. Epilepsia, 2015, 56, 66-76.	2.6	146
85	A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature, 2017, 549, 389-393.	13.7	144
86	Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner. Immunity, 2018, 48, 514-529.e6.	6.6	144
87	Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment. Immunity, 2016, 44, 901-912.	6.6	143
88	A Subset of Skin Macrophages Contributes to the Surveillance and Regeneration of Local Nerves. Immunity, 2019, 50, 1482-1497.e7.	6.6	141
89	Murine Microglial Cells Produce and Respond to Interleukin-18. Journal of Neurochemistry, 2008, 72, 2215-2218.	2.1	139
90	Microglia Plasticity During Health and Disease: An Immunological Perspective. Trends in Immunology, 2015, 36, 614-624.	2.9	136

#	Article	IF	CITATIONS
91	Neurons under T Cell Attack Coordinate Phagocyte-Mediated Synaptic Stripping. Cell, 2018, 175, 458-471.e19.	13.5	136
92	Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nature Neuroscience, 2021, 24, 47-60.	7.1	134
93	Hypothalamic innate immune reaction in obesity. Nature Reviews Endocrinology, 2015, 11, 339-351.	4.3	133
94	Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nature Neuroscience, 2018, 21, 1196-1208.	7.1	132
95	Communicating systems in the body: how microbiota and microglia cooperate. Immunology, 2017, 150, 7-15.	2.0	130
96	Lymph nodal prion replication and neuroinvasion in mice devoid of follicular dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 919-924.	3.3	129
97	Soluble Dimeric Prion Protein Binds PrPSc In Vivo and Antagonizes Prion Disease. Cell, 2003, 113, 49-60.	13.5	129
98	Local Type I IFN Receptor Signaling Protects against Virus Spread within the Central Nervous System. Journal of Immunology, 2009, 182, 2297-2304.	0.4	128
99	Bone Marrow Cell Recruitment to the Brain in the Absence of Irradiation or Parabiosis Bias. PLoS ONE, 2013, 8, e58544.	1.1	127
100	Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science, 2021, 372, .	6.0	127
101	Role of ninjurinâ€i in the migration of myeloid cells to central nervous system inflammatory lesions. Annals of Neurology, 2011, 70, 751-763.	2.8	126
102	Oral Prion Infection Requires Normal Numbers of Peyer's Patches but Not of Enteric Lymphocytes. American Journal of Pathology, 2003, 162, 1103-1111.	1.9	125
103	Silencing of TGFÎ ² signalling in microglia results in impaired homeostasis. Nature Communications, 2018, 9, 4011.	5.8	125
104	Nuclear factor kappa B (NF-κB) in multiple sclerosis pathology. Trends in Molecular Medicine, 2013, 19, 604-613.	3.5	122
105	Type I interferon pathway in CNS homeostasis and neurological disorders. Glia, 2017, 65, 1397-1406.	2.5	117
106	Genetic targeting of microglia. Glia, 2015, 63, 1-22.	2.5	116
107	Interferon-Î ³ differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophages. European Journal of Neuroscience, 2002, 16, 2113-2122.	1.2	111
108	Microglia: unique and common features with other tissue macrophages. Acta Neuropathologica, 2014, 128, 319-331.	3.9	111

#	Article	IF	CITATIONS
109	Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. Nature Cancer, 2021, 2, 723-740.	5.7	110
110	Transcriptomeâ€based profiling of yolk sacâ€derived macrophages reveals a role for Irf8 in macrophage maturation. EMBO Journal, 2016, 35, 1730-1744.	3.5	108
111	Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature, 2022, 604, 740-748.	13.7	107
112	T-cell dysfunction in the glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10. Nature Communications, 2022, 13, 925.	5.8	104
113	Selective inactivation of USP18 isopeptidase activity in vivo enhances ISG15 conjugation and viral resistance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1577-1582.	3.3	100
114	Amyloid beta peptide 1-40 enhances the action of Toll-like receptor-2 and -4 agonists but antagonizes Toll-like receptor-9-induced inflammation in primary mouse microglial cell cultures. Journal of Neurochemistry, 2005, 94, 289-298.	2.1	98
115	Inhibition of amyloid- \hat{l}^2 plaque formation by \hat{l} ±-synuclein. Nature Medicine, 2015, 21, 802-807.	15.2	97
116	Central nervous system myeloid cells as drug targets: current status and translational challenges. Nature Reviews Drug Discovery, 2016, 15, 110-124.	21.5	97
117	Mouse Brain Microglia Express Interleukin-15 and Its Multimeric Receptor Complex Functionally Coupled to Janus Kinase Activity. Journal of Biological Chemistry, 1997, 272, 28853-28860.	1.6	95
118	Microglial Activation by Components of Gram-Positive and -Negative Bacteria: Distinct and Common Routes to the Induction of Ion Channels and Cytokines. Journal of Neuropathology and Experimental Neurology, 1999, 58, 1078-1089.	0.9	95
119	lκB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-κB in the central nervous system. Brain, 2011, 134, 1184-1198.	3.7	94
120	DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas. Cell, 2016, 167, 1264-1280.e18.	13.5	94
121	NLRP3 inflammasome as prognostic factor and therapeutic target in primary progressive multiple sclerosis patients. Brain, 2020, 143, 1414-1430.	3.7	92
122	Microglia contribute to the propagation of $\hat{Al^2}$ into unaffected brain tissue. Nature Neuroscience, 2022, 25, 20-25.	7.1	89
123	Reexamination of the Role of Ubiquitin-Like Modifier ISG15 in the Phenotype of UBP43-Deficient Mice. Molecular and Cellular Biology, 2005, 25, 11030-11034.	1.1	88
124	Seedâ€induced Aβ deposition is modulated by microglia under environmental enrichment in a mouse model of Alzheimer's disease. EMBO Journal, 2018, 37, 167-182.	3.5	87
125	Targeting microglia in brain disorders. Science, 2019, 365, 32-33.	6.0	85
126	Type I Interferon Receptor Signaling of Neurons and Astrocytes Regulates Microglia Activation during Viral Encephalitis. Cell Reports, 2018, 25, 118-129.e4.	2.9	84

#	Article	IF	CITATIONS
127	Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N6-carboxymethyllysine. Nature Neuroscience, 2022, 25, 295-305.	7.1	84
128	Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression. Journal of Clinical Investigation, 2014, 124, 2861-2876.	3.9	83
129	Early and Rapid Engraftment of Bone Marrow-Derived Microglia in Scrapie. Journal of Neuroscience, 2006, 26, 11753-11762.	1.7	82
130	Truncated Prion Protein and Doppel Are Myelinotoxic in the Absence of Oligodendrocytic PrPC. Journal of Neuroscience, 2005, 25, 4879-4888.	1.7	81
131	Inhomogeneous distribution of Ibaâ€1 characterizes microglial pathology in Alzheimer's disease. Glia, 2016, 64, 1562-1572.	2.5	81
132	Comprehensive analysis of PD-L1 expression in glioblastoma multiforme. Oncotarget, 2017, 8, 42214-42225.	0.8	81
133	Development and function of tissue resident macrophages in mice. Seminars in Immunology, 2015, 27, 369-378.	2.7	79
134	Interventional strategies against prion diseases. Nature Reviews Neuroscience, 2001, 2, 745-749.	4.9	76
135	Childhood supratentorial ependymomas with <i>YAP1â€MAMLD1</i> fusion: an entity with characteristic clinical, radiological, cytogenetic and histopathological features. Brain Pathology, 2019, 29, 205-216.	2.1	75
136	Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2020, 8, 119.	2.4	75
137	The protein tyrosine kinase inhibitor AG126 prevents the massive microglial cytokine induction by pneumococcal cell walls. European Journal of Immunology, 2001, 31, 2104-2115.	1.6	74
138	Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain, 2010, 133, 1067-1081.	3.7	73
139	Prion pathogenesis in the absence of Tollâ€ l ike receptor signalling. EMBO Reports, 2003, 4, 195-199.	2.0	72
140	CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3897-3902.	3.3	72
141	Differential contribution of immune effector mechanisms to cortical demyelination in multiple sclerosis. Acta Neuropathologica, 2017, 134, 15-34.	3.9	72
142	Unique microglia recovery population revealed by single-cell RNAseq following neurodegeneration. Acta Neuropathologica Communications, 2018, 6, 87.	2.4	72
143	Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13051-13056.	3.3	71
144	Multi-focal occurrence of cortical dysplasia in epilepsy patients. Brain, 2009, 132, 2079-2090.	3.7	69

#	Article	IF	CITATIONS
145	<scp>CD</scp> 14 is a key organizer of microglial responses to <scp>CNS</scp> infection and injury. Glia, 2016, 64, 635-649.	2.5	69
146	Paracaspase MALT1 Deficiency Protects Mice from Autoimmune-Mediated Demyelination. Journal of Immunology, 2013, 190, 2896-2903.	0.4	68
147	Interferonâ€beta signaling in retinal mononuclear phagocytes attenuates pathological neovascularization. EMBO Molecular Medicine, 2016, 8, 670-678.	3.3	68
148	Dicer Deficiency Differentially Impacts Microglia of the Developing and Adult Brain. Immunity, 2017, 46, 1030-1044.e8.	6.6	68
149	Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1. Acta Neuropathologica Communications, 2016, 4, 102.	2.4	67
150	IL-17 controls central nervous system autoimmunity through the intestinal microbiome. Science Immunology, 2021, 6, .	5.6	67
151	SARS-CoV-2 vaccination can elicit a CD8 T-cell dominant hepatitis. Journal of Hepatology, 2022, 77, 653-659.	1.8	67
152	Stromal Complement Receptor CD21/35 Facilitates Lymphoid Prion Colonization and Pathogenesis. Journal of Immunology, 2007, 179, 6144-6152.	0.4	66
153	Melanotic Tumors of the Nervous System are Characterized by Distinct Mutational, Chromosomal and Epigenomic Profiles. Brain Pathology, 2015, 25, 202-208.	2.1	66
154	Resolution of neuroinflammation: mechanisms and potential therapeutic option. Seminars in Immunopathology, 2019, 41, 699-709.	2.8	65
155	Analyzing microglial phenotypes across neuropathologies: a practical guide. Acta Neuropathologica, 2021, 142, 923-936.	3.9	65
156	Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. Journal of Experimental Medicine, 2017, 214, 905-917.	4.2	63
157	AÎ ² oligomers trigger and accelerate AÎ ² seeding. Brain Pathology, 2020, 30, 36-45.	2.1	62
158	Loss of Trex1 in Dendritic Cells Is Sufficient To Trigger Systemic Autoimmunity. Journal of Immunology, 2016, 197, 2157-2166.	0.4	61
159	Cytosolic RIG-l–like helicases act as negative regulators of sterile inflammation in the CNS. Nature Neuroscience, 2012, 15, 98-106.	7.1	60
160	Myeloid Cells in Alzheimer's Disease: Culprits, Victims or Innocent Bystanders?. Trends in Neurosciences, 2015, 38, 659-668.	4.2	60
161	The Role of TGFÎ ² Signaling in Microglia Maturation and Activation. Trends in Immunology, 2020, 41, 836-848.	2.9	60
162	The roles of microglia in viral encephalitis: from sensome to therapeutic targeting. Cellular and Molecular Immunology, 2021, 18, 250-258.	4.8	60

#	Article	IF	CITATIONS
163	Mapping the origin and fate of myeloid cells in distinct compartments of the eye by singleâ€cell profiling. EMBO Journal, 2021, 40, e105123.	3.5	60
164	Autoantibody-mediated demyelination depends on complement activation but not activatory Fc-receptors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18697-18702.	3.3	59
165	Do not judge a cell by its cover—diversity of CNS resident, adjoining and infiltrating myeloid cells in infilammation. Seminars in Immunopathology, 2015, 37, 591-605.	2.8	58
166	Oligodendrocyte-Specific FADD Deletion Protects Mice from Autoimmune-Mediated Demyelination. Journal of Immunology, 2010, 185, 7646-7653.	0.4	57
167	Microglia metabolism in health and disease. Neurochemistry International, 2019, 130, 104331.	1.9	56
168	Chronic Peripheral Inflammation Causes a Region-Specific Myeloid Response in the Central Nervous System. Cell Reports, 2020, 30, 4082-4095.e6.	2.9	56
169	Antiinflammatory Properties of a Plant-Derived Nonsteroidal, Dissociated Glucocorticoid Receptor Modulator in Experimental Autoimmune Encephalomyelitis. Molecular Endocrinology, 2010, 24, 310-322.	3.7	55
170	Microglia contribute to the glia limitans around arteries, capillaries and veins under physiological conditions, in a model of neuroinflammation and in human brain tissue. Brain Structure and Function, 2019, 224, 1301-1314.	1.2	55
171	Bone Marrow-Derived Cells Expressing Green Fluorescent Protein under the Control of the Glial Fibrillary Acidic Protein Promoter Do Not Differentiate into Astrocytes <i>In Vitro</i> and <i>In Vivo</i> . Journal of Neuroscience, 2003, 23, 5004-5011.	1.7	54
172	Functional Characterization of Aquaporin-4 Specific T Cells: Towards a Model for Neuromyelitis Optica. PLoS ONE, 2011, 6, e16083.	1.1	54
173	Comparative analysis of CreER transgenic mice for the study of brain macrophages: A case study. European Journal of Immunology, 2020, 50, 353-362.	1.6	53
174	Streptococcus pneumoniae Infection Aggravates Experimental Autoimmune Encephalomyelitis via Toll-Like Receptor 2. Infection and Immunity, 2006, 74, 4841-4848.	1.0	52
175	Immune system and peripheral nerves in propagation of prions to CNS. British Medical Bulletin, 2003, 66, 141-159.	2.7	51
176	Licensing of myeloid cells promotes central nervous system autoimmunity and is controlled by peroxisome proliferator-activated receptor Î ³ . Brain, 2012, 135, 1586-1605.	3.7	51
177	A Novel Function for P2Y2 in Myeloid Recipient–Derived Cells during Graft-versus-Host Disease. Journal of Immunology, 2015, 195, 5795-5804.	0.4	51
178	CD14 and TRIF govern distinct responsiveness and responses in mouse microglial TLR4 challenges by structural variants of LPS. Brain, Behavior, and Immunity, 2011, 25, 957-970.	2.0	50
179	The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells. Nature Immunology, 2015, 16, 950-960.	7.0	49
180	Genetic manipulation of microglia during brain development and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 299-309.	1.8	49

#	Article	IF	CITATIONS
181	Intrinsic Resistance of Oligodendrocytes to Prion Infection. Journal of Neuroscience, 2004, 24, 5974-5981.	1.7	46
182	mHERC6 is the essential ISG15 E3 ligase in the murine system. Biochemical and Biophysical Research Communications, 2012, 417, 135-140.	1.0	45
183	The force awakens: insights into the origin and formation of microglia. Current Opinion in Neurobiology, 2016, 39, 30-37.	2.0	45
184	Infratentorial IDH-mutant astrocytoma is a distinct subtype. Acta Neuropathologica, 2020, 140, 569-581.	3.9	45
185	Brain micro-inflammation at specific vessels dysregulates organ-homeostasis via the activation of a new neural circuit. ELife, 2017, 6, .	2.8	45
186	Love and death: microglia, NLRP3 and the Alzheimer's brain. Cell Research, 2013, 23, 595-596.	5.7	44
187	How microbiota shape microglial phenotypes and epigenetics. Clia, 2020, 68, 1655-1672.	2.5	44
188	Ly-6G+CCR2â^' Myeloid Cells Rather Than Ly-6ChighCCR2+ Monocytes Are Required for the Control of Bacterial Infection in the Central Nervous System. Journal of Immunology, 2008, 181, 2713-2722.	0.4	43
189	Papillary glioneuronal tumor (PGNT) exhibits a characteristic methylation profile and fusions involving PRKCA. Acta Neuropathologica, 2019, 137, 837-846.	3.9	43
190	Endogenous, or therapeutically induced, type I interferon responses differentially modulate Th1/Th17â€mediated autoimmunity in the CNS. Immunology and Cell Biology, 2012, 90, 505-509.	1.0	42
191	MyD88 in Macrophages Is Critical for Abscess Resolution in Staphylococcal Skin Infection. Journal of Immunology, 2015, 194, 2735-2745.	0.4	42
192	β-adrenergic receptor stimulation selectively inhibits IL-12p40 release in microglia11Published on the World Wide Web on 30 March 2001 Brain Research, 2001, 899, 264-270.	1.1	41
193	Diet-dependent regulation of TGFÎ ² impairs reparative innate immune responses after demyelination. Nature Metabolism, 2021, 3, 211-227.	5.1	41
194	Vaccination with Aβ-Displaying Virus-Like Particles Reduces Soluble and Insoluble Cerebral Aβ and Lowers Plaque Burden in APP Transgenic Mice. Journal of Immunology, 2009, 182, 7613-7624.	0.4	40
195	Safeguard function of PU.1 shapes the inflammatory epigenome of neutrophils. Nature Immunology, 2019, 20, 546-558.	7.0	40
196	Maternal Type-I interferon signaling adversely affects the microglia and the behavior of the offspring accompanied by increased sensitivity to stress. Molecular Psychiatry, 2020, 25, 1050-1067.	4.1	40
197	Temporospatial distribution and transcriptional profile of retinal microglia in the oxygenâ€induced retinopathy mouse model. Glia, 2020, 68, 1859-1873.	2.5	40
198	Induction of inhibitory central nervous system-derived and stimulatory blood-derived dendritic cells suggests a dual role for granulocyte-macrophage colony-stimulating factor in central nervous system inflammation. Brain, 2010, 133, 1637-1654.	3.7	39

#	Article	IF	CITATIONS
199	New lessons about old molecules: how type I interferons shape Th1/Th17-mediated autoimmunity in the CNS. Trends in Molecular Medicine, 2010, 16, 379-386.	3.5	39
200	Regulation of Experimental Autoimmune Encephalomyelitis by TPL-2 Kinase. Journal of Immunology, 2014, 192, 3518-3529.	0.4	39
201	Microglia: A Unique Versatile Cell in the Central Nervous System. ACS Chemical Neuroscience, 2016, 7, 428-434.	1.7	39
202	Fine-tuning of type I IFN-signaling in microglia — implications for homeostasis, CNS autoimmunity and interferonopathies. Current Opinion in Neurobiology, 2016, 36, 38-42.	2.0	39
203	Extent of mossy fiber sprouting in patients with mesiotemporal lobe epilepsy correlates with neuronal cell loss and granule cell dispersion. Epilepsy Research, 2017, 129, 51-58.	0.8	39
204	Endogenous retroviruses are associated with hippocampus-based memory impairment. Proceedings of the United States of America, 2019, 116, 25982-25990.	3.3	39
205	CYBB/NOX2 in conventional DCs controls T cell encephalitogenicity during neuroinflammation. Autophagy, 2021, 17, 1244-1258.	4.3	39
206	NG2 expressed by macrophages and oligodendrocyte precursor cells is dispensable in experimental autoimmune encephalomyelitis. Brain, 2011, 134, 1315-1330.	3.7	38
207	NF-κB signaling regulates myelination in the CNS. Frontiers in Molecular Neuroscience, 2014, 7, 47.	1.4	38
208	Surgical Treatment of Mesiotemporal Lobe Epilepsy: Which Approach is Favorable?. Neurosurgery, 2017, 81, 992-1004.	0.6	38
209	Infiltration of circulating myeloid cells through CD95L contributes to neurodegeneration in mice. Journal of Experimental Medicine, 2015, 212, 469-480.	4.2	37
210	TGF-β inhibitor Smad7 regulates dendritic cell-induced autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1480-E1489.	3.3	37
211	Tumors diagnosed as cerebellar glioblastoma comprise distinct molecular entities. Acta Neuropathologica Communications, 2019, 7, 163.	2.4	37
212	Reflections on the past two decades of neuroscience. Nature Reviews Neuroscience, 2020, 21, 524-534.	4.9	35
213	Graft-versus-host disease of the CNS is mediated by TNF upregulation in microglia. Journal of Clinical Investigation, 2020, 130, 1315-1329.	3.9	35
214	Endothelin-induced calcium signaling in cultured mouse microglial cells is mediated through ETB receptors. NeuroReport, 1997, 8, 2127-2131.	0.6	34
215	Early Microglia Activation Precedes Photoreceptor Degeneration in a Mouse Model of CNGB1-Linked Retinitis Pigmentosa. Frontiers in Immunology, 2017, 8, 1930.	2.2	34
216	Gut microbes augment neurodegeneration. Nature, 2017, 544, 304-305.	13.7	31

#	Article	IF	CITATIONS
217	Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression. Molecular Cancer Research, 2017, 15, 998-1011.	1.5	30
218	PIAS2-mediated blockade of IFN-β signaling: a basis for sporadic Parkinson disease dementia. Molecular Psychiatry, 2021, 26, 6083-6099.	4.1	30
219	Current tools to interrogate microglial biology. Neuron, 2021, 109, 2805-2819.	3.8	30
220	Type I Interferons as Ambiguous Modulators of Chronic Inflammation in the Central Nervous System. Frontiers in Immunology, 2012, 3, 67.	2.2	29
221	Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. Glia, 2015, 63, 1083-1099.	2.5	29
222	Neuronal IFN-beta–induced PI3K/Akt-FoxA1 signalling is essential for generation of FoxA1+Treg cells. Nature Communications, 2017, 8, 14709.	5.8	29
223	CD4+NKG2D+ T Cells Exhibit Enhanced Migratory and Encephalitogenic Properties in Neuroinflammation. PLoS ONE, 2013, 8, e81455.	1.1	28
224	Neural metabolic imbalance induced by MOF dysfunction triggers pericyte activation and breakdown of vasculature. Nature Cell Biology, 2020, 22, 828-841.	4.6	27
225	Tolerance Induction in Experimental Autoimmune Encephalomyelitis Using Non-myeloablative Hematopoietic Gene Therapy With Autoantigen. Molecular Therapy, 2009, 17, 897-905.	3.7	26
226	Meningiomas induced by low-dose radiation carry structural variants of NF2 and a distinct mutational signature. Acta Neuropathologica, 2017, 134, 155-158.	3.9	26
227	Age-Related Gliosis Promotes Central Nervous System Lymphoma through CCL19-Mediated Tumor Cell Retention. Cancer Cell, 2019, 36, 250-267.e9.	7.7	25
228	Fibronectin is elevated in the cerebrospinal fluid of patients suffering from bacterial meningitis and enhances inflammation caused by bacterial products in primary mouse microglial cell cultures. Journal of Neurochemistry, 2007, 102, 2049-2060.	2.1	24
229	Type I interferon receptor signalling is induced during demyelination while its function for myelin damage and repair is redundant. Experimental Neurology, 2009, 216, 306-311.	2.0	23
230	Dysfunctional dendritic cells limit antigen-specific T cell response in glioma. Neuro-Oncology, 2023, 25, 263-276.	0.6	23
231	Overexpression of Lymphotoxin in T Cells Induces Fulminant Thymic Involution. American Journal of Pathology, 2008, 172, 1555-1570.	1.9	22
232	TGFβ regulates persistent neuroinflammation by controlling Th1 polarization and ROS production via monocyteâ€derived dendritic cells. Glia, 2016, 64, 1925-1937.	2.5	22
233	Resistance to Hypoxia-Induced, BNIP3-Mediated Cell Death Contributes to an Increase in a CD133-Positive Cell Population in Human Glioblastomas In Vitro. Journal of Neuropathology and Experimental Neurology, 2012, 71, 1086-1099.	0.9	21
234	Glial epigenetics in neuroinflammation and neurodegeneration. Cell and Tissue Research, 2014, 356, 609-616.	1.5	21

#	Article	IF	CITATIONS
235	Microenvironment-Derived Regulation of HIF Signaling Drives Transcriptional Heterogeneity in Glioblastoma Multiforme. Molecular Cancer Research, 2018, 16, 655-668.	1.5	21
236	Expression differences of programmed death ligand 1 in de-novo and recurrent glioblastoma multiforme. Oncotarget, 2017, 8, 74170-74177.	0.8	21
237	Drug reaction with eosinophilia and systemic symptoms after daclizumab therapy. Neurology, 2018, 91, e359-e363.	1.5	20
238	Microbiota-dependent increase in \hat{l}' -valerobetaine alters neuronal function and is responsible for age-related cognitive decline. Nature Aging, 2021, 1, 1127-1136.	5.3	20
239	Human herpes virus-8 is not associated with primary central nervous system lymphoma in HIV-negative patients. Acta Neuropathologica, 2001, 102, 489-495.	3.9	19
240	Characterization of focal cortical dysplasia with balloon cells by layerâ€specific markers: Evidence for differential vulnerability of interneurons. Epilepsia, 2017, 58, 635-645.	2.6	19
241	The probacterial effect of type I interferon signaling requires its own negative regulator USP18. Science Immunology, 2018, 3, .	5.6	19
242	Differing Outcome of Experimental Autoimmune Encephalitis in Macrophage/Neutrophil- and T Cell-Specific gp130-Deficient Mice. Frontiers in Immunology, 2018, 9, 836.	2.2	19
243	Targeting interferon activity to dendritic cells enables in vivo tolerization and protection against EAE in mice. Journal of Autoimmunity, 2019, 97, 70-76.	3.0	19
244	GPCRomics of Homeostatic and Disease-Associated Human Microglia. Frontiers in Immunology, 2021, 12, 674189.	2.2	19
245	Oligosarcomas, IDH-mutant are distinct and aggressive. Acta Neuropathologica, 2022, 143, 263-281.	3.9	18
246	Pathogenesis of prion diseases: possible implications of microglial cells. Progress in Brain Research, 2001, 132, 737-750.	0.9	17
247	Germinal center B cells are dispensable in prion transport and neuroinvasion. Journal of Neuroimmunology, 2007, 192, 113-123.	1.1	17
248	Myeloid leukemia with transdifferentiation plasticity developing from Tâ€cell progenitors. EMBO Journal, 2016, 35, 2399-2416.	3.5	17
249	HSPB3 protein is expressed in motoneurons and induces their survival after lesion-induced degeneration. Experimental Neurology, 2016, 286, 40-49.	2.0	17
250	Environmental enrichment reverses Aβ pathology during pregnancy in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2018, 6, 44.	2.4	17
251	Chitinase 3–like 1 and neurofilament light chain in CSF and CNS atrophy in MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, e906.	3.1	17
252	Sequential High Dose Immuno-Chemotherapy Followed by Autologous Peripheral Blood Stem Cell Transplantation for Patients with Untreated Primary Central Nervous System Lymphoma - a Multicentre Study by the Collaborative PCNSL Study Group Freiburg. Blood, 2012, 120, 302-302.	0.6	17

#	Article	IF	CITATIONS
253	Erythropoietin Abrogates Post-Ischemic Activation of the NLRP3, NLRC4, and AIM2 Inflammasomes in Microglia/Macrophages in a TAK1-Dependent Manner. Translational Stroke Research, 2022, 13, 462-482.	2.3	17
254	Tyrosine Kinase Inhibition Reduces Inflammation in the Acute Stage of Experimental Pneumococcal Meningitis. Infection and Immunity, 2004, 72, 3294-3298.	1.0	16
255	Antiprion Prophylaxis by Gene Transfer of a Soluble Prion Antagonist. American Journal of Pathology, 2008, 172, 1287-1296.	1.9	16
256	Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy. Nature Communications, 2021, 12, 6530.	5.8	16
257	Spongiform encephalopathies: Insights from transgenic models. Advances in Virus Research, 2001, 56, 313-352.	0.9	15
258	How type I interferons shape myeloid cell function in CNS autoimmunity. Journal of Leukocyte Biology, 2012, 92, 479-488.	1.5	15
259	CatacLysMic specificity when targeting myeloid cells?. European Journal of Immunology, 2016, 46, 1340-1342.	1.6	15
260	Loss of USP18 in microglia induces white matter pathology. Acta Neuropathologica Communications, 2019, 7, 106.	2.4	15
261	Identification of CNS Injury-Related microRNAs as Novel Toll-Like Receptor 7/8 Signaling Activators by Small RNA Sequencing. Cells, 2020, 9, 186.	1.8	15
262	Profiling of Circulating Tumor DNA for Noninvasive Disease Detection, Risk Stratification, and MRD Monitoring in Patients with CNS Lymphoma. Blood, 2021, 138, 6-6.	0.6	15
263	Neuropathological interpretation of stimulated Raman histology images of brain and spine tumors: part B. Neurosurgical Review, 2022, 45, 1721-1729.	1.2	15
264	Alternative splicing of mouse IL-15 is due to the use of an internal splice site in exon 5. Molecular Brain Research, 1998, 63, 155-162.	2.5	14
265	Long-term epilepsy-associated tumors: transcriptional signatures reflect clinical course. Scientific Reports, 2020, 10, 96.	1.6	14
266	CD4+ T-cell-derived IL-10 promotes CNS inflammation in mice by sustaining effector TÂcell survival. Cell Reports, 2022, 38, 110565.	2.9	14
267	Life and death of microglia: Mechanisms governing microglial states and fates. Immunology Letters, 2022, 245, 51-60.	1.1	14
268	Transsylvian Selective Amygdalohippocampectomy for Mesiotemporal Epilepsy: Experience with 162 Procedures. Neurosurgery, 2017, 80, 454-464.	0.6	13
269	Microglia: Same same, but different. Journal of Experimental Medicine, 2019, 216, 2223-2225.	4.2	13
270	Oligodendrocyte lineage and myelination are compromised in the gray matter of focal cortical dysplasia type IIa. Epilepsia, 2020, 61, 171-184.	2.6	13

#	Article	IF	CITATIONS
271	The origin, fate and function of macrophages in the peripheral nervous system—an update. International Immunology, 2020, 32, 709-717.	1.8	13
272	CD40 activation induces NREM sleep and modulates genes associated with sleep homeostasis. Brain, Behavior, and Immunity, 2013, 27, 133-144.	2.0	12
273	Pleomorphic xanthoastrocytoma is a heterogeneous entity with pTERT mutations prognosticating shorter survival. Acta Neuropathologica Communications, 2022, 10, 5.	2.4	12
274	Stimulated Raman histology in the neurosurgical workflow of a major European neurosurgical center — part A. Neurosurgical Review, 2022, 45, 1731-1739.	1.2	12
275	Minocycline delays but does not attenuate the course of experimental autoimmune encephalomyelitis in Streptococcus pneumoniae-infected mice. Journal of Antimicrobial Chemotherapy, 2006, 59, 74-79.	1.3	11
276	Reduced mitochondrial resilience enables non-canonical induction of apoptosis after TNF receptor signaling in virus-infected hepatocytes. Journal of Hepatology, 2020, 73, 1347-1359.	1.8	11
277	ATG5 in microglia does not contribute vitally to autoimmune neuroinflammation in mice. Autophagy, 2021, 17, 3566-3576.	4.3	11
278	Evaluating microglial phenotypes using single-cell technologies. Trends in Neurosciences, 2022, 45, 133-144.	4.2	11
279	Current Concepts and Controversies in Prion Immunopathology. Journal of Molecular Neuroscience, 2004, 23, 003-012.	1.1	10
280	Ibrutinib in patients with relapsed/refractory central nervous system lymphoma: A retrospective single entre analysis. British Journal of Haematology, 2020, 190, e110-e114.	1.2	10
281	The role of interferon regulatory factor 8 for retinal tissue homeostasis and development of choroidal neovascularisation. Journal of Neuroinflammation, 2021, 18, 215.	3.1	10
282	IL-6-induced FOXO1 activity determines the dynamics of metabolism in CD8 TÂcells cross-primed by liver sinusoidal endothelial cells. Cell Reports, 2022, 38, 110389.	2.9	10
283	Paraganglioma of the cerebellum: case report and review of the literature. International Journal of Clinical Oncology, 2005, 10, 447-452.	1.0	9
284	Deciphering the heterogeneity of myeloid cells during neuroinflammation in the single ell era. Brain Pathology, 2020, 30, 1192-1207.	2.1	9
285	Analysis of Driver Mutational Hot Spots in Blood-Derived Cell-Free DNA of Patients with Primary Central Nervous System Lymphoma Obtained before Intracerebral Biopsy. Journal of Molecular Diagnostics, 2020, 22, 1300-1307.	1.2	9
286	Mapping of Metabolic Heterogeneity of Glioma Using MR-Spectroscopy. Cancers, 2021, 13, 2417.	1.7	8
287	Editors' preface: Microglia—A new era dawns. Glia, 2013, 61, 1-2.	2.5	7
288	Astrocytic NFâ€₽̂B brings the best and worst out of microglia. EMBO Journal, 2018, 37, .	3.5	6

#	Article	IF	CITATIONS
289	Inhibition of experimental autoimmune encephalomyelitis by tolerance-promoting DNA vaccination focused to dendritic cells. PLoS ONE, 2018, 13, e0191927.	1.1	6
290	Interleukin-2 as a Neuroregulatory Cytokine. NeuroImmune Biology, 2008, 6, 145-165.	0.2	5
291	Burning down the house: <scp>IRF</scp> 7 makes the difference for microglia. EMBO Journal, 2014, 33, 2885-2886.	3.5	5
292	Microglia fuel the learning brain. Trends in Immunology, 2014, 35, 139-140.	2.9	5
293	A gut feeling about multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10528-10529.	3.3	5
294	DNMT1 Deficiency Impacts on Plasmacytoid Dendritic Cells in Homeostasis and Autoimmune Disease. Journal of Immunology, 2022, 208, 358-370.	0.4	5
295	Necrotizing meningoencephalitis mimicking cerebellopontine angle tumor as late complication following cochlear implantation. Cochlear Implants International, 2012, 13, 60-64.	0.5	4
296	Microglia and monocytes: molecularly defined. Acta Neuropathologica, 2014, 128, 317-318.	3.9	4
297	A Case of Large Meningeal Epithelioid Hemangioendothelioma With WWTR1–CAMTA1 Gene Rearrangement and Slow Growth Over 15 Years. Journal of Neuropathology and Experimental Neurology, 2018, 77, 871-876.	0.9	4
298	Oncogenic transgelin-2 is differentially regulated in isocitrate dehydrogenase wild-type vs. mutant gliomas. Oncotarget, 2018, 9, 37097-37111.	0.8	4
299	Targeting IFN activity to both B cells and plasmacytoid dendritic cells induces a robust tolerogenic response and protection against EAE. Scientific Reports, 2021, 11, 21575.	1.6	4
300	Amino Acid PET Tracer Accumulation in Cortical Ischemia. Clinical Nuclear Medicine, 2010, 35, 907-908.	0.7	3
301	Discrimination of epileptogenic lesions and perilesional white matter using diffusion tensor magnetic resonance imaging. Neuroradiology Journal, 2019, 32, 10-16.	0.6	3
302	Usp18 Expression in CD169+ Macrophages is Important for Strong Immune Response after Vaccination with VSV-EBOV. Vaccines, 2020, 8, 142.	2.1	3
303	Reply: From early limbic inflammation to long COVID sequelae. Brain, 2021, 144, e66-e66.	3.7	3
304	Distinct Aβ pathology in the olfactory bulb and olfactory deficits in a mouse model of Aβ and αâ€syn coâ€pathology. Brain Pathology, 2021, , e13032.	2.1	3
305	TAT-MeCP2 protein variants rescue disease phenotypes in human and mouse models of Rett syndrome. International Journal of Biological Macromolecules, 2022, 209, 972-983.	3.6	3
306	Paradoxical immunodeficiencies—When failures of innate immunity cause immunopathology. European Journal of Immunology, 2022, 52, 1419-1430.	1.6	3

#	Article	IF	CITATIONS
307	lκB-ζ Deficiency Leaves Epithelial Cells High and Dry. Immunity, 2013, 38, 404-406.	6.6	2
308	The myeloid side of the CNS. Brain Pathology, 2020, 30, 1158-1158.	2.1	2
309	Flow-cytometry-based protocol to analyze respiratory chain function in mouse microglia. STAR Protocols, 2022, 3, 101186.	0.5	2
310	From shape to contents: heterogeneity of CNS glial cells. Acta Neuropathologica, 2022, 143, 123-124.	3.9	2
311	Microglia are unique tissue phagocytes with high self-renewing capacity. Journal of Neuroimmunology, 2014, 275, 82.	1.1	1
312	Nr4a1 discloses the sympathetic side of monocytes. Nature Immunology, 2015, 16, 1211-1213.	7.0	1
313	Neuropathological evaluation of a vertebrate brain aged ~ 245Âyears. Acta Neuropathologica, 2021, 141 133-136.	'3.9	1
314	Replication of Influenza A Virus in Secondary Lymphatic Tissue Contributes to Innate Immune Activation. Pathogens, 2021, 10, 622.	1.2	1
315	Neuronal TNFα , Not αâ€5yn, Underlies PDD â€Like Disease Progression in IFNβâ€KO Mice. Annals of Neurology, 2021, 90, 789-807.	2.8	1
316	A Reversible Region-Specific Innate Immune Fingerprint in the Brain Induced by Chronic Peripheral Inflammation. SSRN Electronic Journal, 0, , .	0.4	1
317	Immune-mediated Hepatitis associated with SARS-CoV-2 mRNA vaccination. Zeitschrift Fur Gastroenterologie, 2022, 60, .	0.2	1
318	DC specific Smad7 deficiency promotes differentiation of tolerogenic DCs able to attenuate EAE. Journal of Neuroimmunology, 2014, 275, 67.	1.1	0
319	GENE-27. GENOME-WIDE DNA METHYLATION PROFILING IN GRADE II AND III GLIOMAS REVEALS A SUBSET OF GENES WITH PROGNOSTIC SIGNIFICANCE CONTROLLED BY PROMOTER METHYLATION. Neuro-Oncology, 2018, 20, vi109-vi109.	0.6	0
320	CSIG-21. THE ROLE OF miR-219a-2-3p AS A TUMOR SUPPRESSOR IN IDH1/2-WILD-TYPE GRADE II/III GLIOMAS. Neuro-Oncology, 2018, 20, vi47-vi47.	0.6	0
321	Sonderforschungsbereich (SFB/TRR 167) NeuroMac "Entwicklung, Funktion und Potenzial von myeloischen Zellen im zentralen Nervensystem". E-Neuroforum, 2018, 24, 61-66.	0.2	0
322	CNS myeloid cell heterogeneity at the single-cell level. Neuroforum, 2019, 25, 195-204.	0.2	0
323	Antiinflammatory Properties of a Plant-Derived Nonsteroidal, Dissociated Glucocorticoid Receptor Modulator in Experimental Autoimmune Encephalomyelitis. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 5184-5184.	1.8	Ο
324	PATH-23. OLIGOSARCOMA, IDH-MUTANT IS A DISTINCT AGGRESSIVE TYPE. Neuro-Oncology, 2021, 23, vi119-vi120.	0.6	0

#	Article	IF	CITATIONS
325	IMMU-04. UNVEILING THE TUMOR-METABOLOME-IMMUNITY AXIS OF GLIOMA. Neuro-Oncology, 2021, 23, vi92-vi92.	0.6	0