
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2561553/publications.pdf Version: 2024-02-01

IUHA HUISKONEN

#	Article	IF	CITATIONS
1	Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes. Nature Communications, 2015, 6, 8843.	12.8	225
2	Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nature Structural and Molecular Biology, 2017, 24, 114-122.	8.2	155
3	Electron Cryotomography of Tula Hantavirus Suggests a Unique Assembly Paradigm for Enveloped Viruses. Journal of Virology, 2010, 84, 4889-4897.	3.4	124
4	lsolation and characterization of the positive-sense replicative intermediate of a negative-strand RNA virus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4238-45.	7.1	118
5	Near-atomic structure of Japanese encephalitis virus reveals critical determinants of virulence and stability. Nature Communications, 2017, 8, 14.	12.8	117
6	Electron Cryo-Microscopy and Single-Particle Averaging of Rift Valley Fever Virus: Evidence for G _N -G _C Glycoprotein Heterodimers. Journal of Virology, 2009, 83, 3762-3769.	3.4	112
7	Structure of the Bacteriophage ϕ6 Nucleocapsid Suggests a Mechanism for Sequential RNA Packaging. Structure, 2006, 14, 1039-1048.	3.3	108
8	Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2. Nature Structural and Molecular Biology, 2017, 24, 123-130.	8.2	105
9	Acidic pH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike. PLoS Pathogens, 2016, 12, e1005418.	4.7	105
10	Eisosome proteins assemble into a membrane scaffold. Journal of Cell Biology, 2011, 195, 889-902.	5.2	103
11	The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nature Communications, 2019, 10, 3956.	12.8	101
12	Electron cryotomography of measles virus reveals how matrix protein coats the ribonucleocapsid within intact virions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18085-18090.	7.1	98
13	Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2375-2379.	7.1	96
14	Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7320-7325.	7.1	95
15	Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nature Structural and Molecular Biology, 2015, 22, 788-794.	8.2	89
16	Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7154-7159.	7.1	87
17	Minor proteins, mobile arms and membrane–capsid interactions in the bacteriophage PRD1 capsid. Nature Structural Biology, 2002, 9, 756-763.	9.7	80
18	Shielding and activation of a viral membrane fusion protein. Nature Communications, 2018, 9, 349.	12.8	78

#	Article	IF	CITATIONS
19	Eisosome-driven plasma membrane organization is mediated by BAR domains. Nature Structural and Molecular Biology, 2011, 18, 854-856.	8.2	77
20	Rules of engagement between αvβ6 integrin and foot-and-mouth disease virus. Nature Communications, 2017, 8, 15408.	12.8	75
21	Nucleocapsid assembly in pneumoviruses is regulated by conformational switching of the N protein. ELife, 2016, 5, e12627.	6.0	72
22	Efficient production of Rift Valley fever virus-like particles: The antiviral protein MxA can inhibit primary transcription of bunyaviruses. Virology, 2009, 385, 400-408.	2.4	69
23	The PM2 virion has a novel organization with an internal membrane and pentameric receptor binding spikes. Nature Structural and Molecular Biology, 2004, 11, 850-856.	8.2	60
24	Orthobunyavirus Ultrastructure and the Curious Tripodal Glycoprotein Spike. PLoS Pathogens, 2013, 9, e1003374.	4.7	59
25	Multiple liquid crystalline geometries of highly compacted nucleic acid in a dsRNA virus. Nature, 2019, 570, 252-256.	27.8	59
26	Membrane Proteins Modulate the Bilayer Curvature in the Bacterial Virus Bam35. Structure, 2005, 13, 1819-1828.	3.3	58
27	A Molecular-Level Account of the Antigenic Hantaviral Surface. Cell Reports, 2016, 15, 959-967.	6.4	57
28	Electron Cryomicroscopy Comparison of the Architectures of the Enveloped Bacteriophages ϕ6 and ϕ8. Structure, 2007, 15, 157-167.	3.3	56
29	The Structure of the Bacteriophage PRD1 Spike Sheds Light on the Evolution of Viral Capsid Architecture. Molecular Cell, 2005, 18, 161-170.	9.7	54
30	Cryo Electron Tomography of Herpes Simplex Virus during Axonal Transport and Secondary Envelopment in Primary Neurons. PLoS Pathogens, 2011, 7, e1002406.	4.7	52
31	The Hantavirus Surface Glycoprotein Lattice and Its Fusion Control Mechanism. Cell, 2020, 183, 442-456.e16.	28.9	52
32	The Structure of Herpesvirus Fusion Glycoprotein B-Bilayer Complex Reveals the Protein-Membrane and Lateral Protein-Protein Interaction. Structure, 2013, 21, 1396-1405.	3.3	47
33	Structure and Self-Assembly of the Calcium Binding Matrix Protein of Human Metapneumovirus. Structure, 2014, 22, 136-148.	3.3	44
34	Virus found in a boreal lake links ssDNA and dsDNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8378-8383.	7.1	44
35	Snapshot of virus evolution in hypersaline environments from the characterization of a membrane-containing <i>Salisaeta</i> icosahedral phage 1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7079-7084.	7.1	42
36	Structure of a hexameric RNA packaging motor in a viral polymerase complex. Journal of Structural Biology, 2007, 158, 156-164.	2.8	41

#	Article	IF	CITATIONS
37	A Protective Monoclonal Antibody Targets a Site of Vulnerability on the Surface of Rift Valley Fever Virus. Cell Reports, 2018, 25, 3750-3758.e4.	6.4	41
38	Tale of two spikes in bacteriophage PRD1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6666-6671.	7.1	40
39	Drastic changes in conformational dynamics of the antiterminator M2-1 regulate transcription efficiency in Pneumovirinae. ELife, 2014, 3, e02674.	6.0	39
40	Low pH and Anionic Lipid-dependent Fusion of Uukuniemi Phlebovirus to Liposomes. Journal of Biological Chemistry, 2016, 291, 6412-6422.	3.4	38
41	Structural Transitions of the Conserved and Metastable Hantaviral Glycoprotein Envelope. Journal of Virology, 2017, 91, .	3.4	38
42	The structure of a prokaryotic viral envelope protein expands the landscape of membrane fusion proteins. Nature Communications, 2019, 10, 846.	12.8	37
43	Double-stranded RNA virus outer shell assembly by bona fide domain-swapping. Nature Communications, 2017, 8, 14814.	12.8	35
44	Classification and three-dimensional reconstruction of unevenly distributed or symmetry mismatched features of icosahedral particles. Journal of Structural Biology, 2005, 150, 332-339.	2.8	34
45	Membrane-containing viruses with icosahedrally symmetric capsids. Current Opinion in Structural Biology, 2007, 17, 229-236.	5.7	34
46	Localized reconstruction in Scipion expedites the analysis of symmetry mismatches in cryo-EM data. Progress in Biophysics and Molecular Biology, 2021, 160, 43-52.	2.9	33
47	Assessment of Immunogenicity and Neutralisation Efficacy of Viral-Vectored Vaccines Against Chikungunya Virus. Viruses, 2019, 11, 322.	3.3	32
48	Unique architecture of thermophilic archaeal virus APBV1 and its genome packaging. Nature Communications, 2017, 8, 1436.	12.8	31
49	Image processing for cryogenic transmission electron microscopy of symmetry-mismatched complexes. Bioscience Reports, 2018, 38, .	2.4	31
50	Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus. Nature Immunology, 2018, 19, 1248-1256.	14.5	31
51	Snapshots of actin and tubulin folding inside the TRiC chaperonin. Nature Structural and Molecular Biology, 2022, 29, 420-429.	8.2	29
52	Crystal Structure of Venezuelan Hemorrhagic Fever Virus Fusion Glycoprotein Reveals a Class 1 Postfusion Architecture with Extensive Glycosylation. Journal of Virology, 2013, 87, 13070-13075.	3.4	26
53	Structural Plasticity of the Semliki Forest Virus Glycome upon Interspecies Transmission. Journal of Proteome Research, 2014, 13, 1702-1712.	3.7	26
54	Averaging of Viral Envelope Glycoprotein Spikes from Electron Cryotomography Reconstructions using Jsubtomo. Journal of Visualized Experiments, 2014, , e51714.	0.3	24

#	Article	IF	CITATIONS
55	Uukuniemi Phlebovirus Assembly and Secretion Leave a Functional Imprint on the Virion Glycome. Journal of Virology, 2014, 88, 10244-10251.	3.4	22
56	Mycobacterium tuberculosis CarD, an essential global transcriptional regulator forms amyloid-like fibrils. Scientific Reports, 2018, 8, 10124.	3.3	22
57	Structures of foot and mouth disease virus pentamers: Insight into capsid dissociation and unexpected pentamer reassociation. PLoS Pathogens, 2017, 13, e1006607.	4.7	21
58	Molecular rationale for antibody-mediated targeting of the hantavirus fusion glycoprotein. ELife, 2020, 9, .	6.0	19
59	Probing the ability of the coat and vertex protein of the membrane-containing bacteriophage PRD1 to display a meningococcal epitope. Virology, 2003, 310, 267-279.	2.4	17
60	Beyond structures of highly symmetric purified viral capsids by cryo-EM. Current Opinion in Structural Biology, 2018, 52, 25-31.	5.7	17
61	Assembly of complex viruses exemplified by a halophilic euryarchaeal virus. Nature Communications, 2019, 10, 1456.	12.8	17
62	Understanding the structure and role of DNA-PK in NHEJ: How X-ray diffraction and cryo-EM contribute in complementary ways. Progress in Biophysics and Molecular Biology, 2019, 147, 26-32.	2.9	15
63	Structural Basis for a Neutralizing Antibody Response Elicited by a Recombinant Hantaan Virus Gn Immunogen. MBio, 2021, 12, e0253120.	4.1	13
64	Determination of N-linked Glycosylation in Viral Glycoproteins by Negative Ion Mass Spectrometry and Ion Mobility. Methods in Molecular Biology, 2015, 1331, 93-121.	0.9	11
65	Towards in cellulo virus crystallography. Scientific Reports, 2018, 8, 3771.	3.3	11
66	Structures of enveloped virions determined by cryogenic electron microscopy and tomography. Advances in Virus Research, 2019, 105, 35-71.	2.1	10
67	Assessment of Immunogenicity and Efficacy of a Zika Vaccine Using Modified Vaccinia Ankara Virus as Carriers. Pathogens, 2019, 8, 216.	2.8	9
68	Dual Role of a Viral Polymerase in Viral Genome Replication and Particle Self-Assembly. MBio, 2018, 9, .	4.1	8
69	Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite. Nature Communications, 2022, 13, .	12.8	8
70	Structure of a Cell Entry Defective Human Adenovirus Provides Insights into Precursor Proteins and Capsid Maturation. Journal of Molecular Biology, 2022, 434, 167350.	4.2	4
71	Editorial overview: Virus structure and assembly: Virions — from structure and physics to design principles. Current Opinion in Virology, 2016, 18, vii-viii.	5.4	0
72	Studying membrane fusion at molecular resolution. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C187-C188.	0.3	0