
Michael J Kleeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2561078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurement of Emissions from Air Pollution Sources. 3. C1â^'C29Organic Compounds from Fireplace Combustion of Wood. Environmental Science & Technology, 2001, 35, 1716-1728.	10.0	1,094
2	Measurement of Emissions from Air Pollution Sources. 2. C1through C30Organic Compounds from Medium Duty Diesel Trucks. Environmental Science & Technology, 1999, 33, 1578-1587.	10.0	1,002
3	Measurement of Emissions from Air Pollution Sources. 5. C1â^C32 Organic Compounds from Gasoline-Powered Motor Vehicles. Environmental Science & Technology, 2002, 36, 1169-1180.	10.0	940
4	Measurement of Emissions from Air Pollution Sources. 1. C1through C29Organic Compounds from Meat Charbroiling. Environmental Science & Technology, 1999, 33, 1566-1577.	10.0	504
5	Size and Composition Distribution of Fine Particulate Matter Emitted from Motor Vehicles. Environmental Science & Technology, 2000, 34, 1132-1142.	10.0	406
6	Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5802-5807.	7.1	401
7	Direct Observation of Heterogeneous Chemistry in the Atmosphere. Science, 1998, 279, 1184-1187.	12.6	340
8	Measurement of Emissions from Air Pollution Sources. 4. C1â^'C27Organic Compounds from Cooking with Seed Oils. Environmental Science & Technology, 2002, 36, 567-575.	10.0	328
9	Associations of Mortality with Long-Term Exposures to Fine and Ultrafine Particles, Species and Sources: Results from the California Teachers Study Cohort. Environmental Health Perspectives, 2015, 123, 549-556.	6.0	325
10	Size and Composition Distribution of Fine Particulate Matter Emitted from Wood Burning, Meat Charbroiling, and Cigarettes. Environmental Science & Technology, 1999, 33, 3516-3523.	10.0	310
11	Comparison of Real-Time Instruments Used To Monitor Airborne Particulate Matter. Journal of the Air and Waste Management Association, 2001, 51, 109-120.	1.9	192
12	Evaluating the first-order effect of intraannual temperature variability on urban air pollution. Journal of Geophysical Research, 2003, 108, .	3.3	154
13	The chemical composition of atmospheric ultrafine particles. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 2581-2592.	3.4	146
14	Source contributions to the regional distribution of secondary particulate matter in California. Atmospheric Environment, 2006, 40, 736-752.	4.1	138
15	A 3D Eulerian Source-Oriented Model for an Externally Mixed Aerosol. Environmental Science & Technology, 2001, 35, 4834-4848.	10.0	131
16	Quinone Emissions from Gasoline and Diesel Motor Vehicles. Environmental Science & Technology, 2007, 41, 4548-4554.	10.0	125
17	Source contributions to the size and composition distribution of urban particulate air pollution. Atmospheric Environment, 1998, 32, 2803-2816.	4.1	123
18	Measuring the Trace Elemental Composition of Size-Resolved Airborne Particles. Environmental Science & Technology, 2006, 40, 1925-1933.	10.0	123

#	Article	IF	CITATIONS
19	Particle Detection Efficiencies of Aerosol Time of Flight Mass Spectrometers under Ambient Sampling Conditions. Environmental Science & Technology, 2000, 34, 211-217.	10.0	109
20	Lubricating Oil and Fuel Contributions To Particulate Matter Emissions from Light-Duty Gasoline and Heavy-Duty Diesel Vehicles. Environmental Science & Technology, 2008, 42, 235-242.	10.0	105
21	Modeling the airborne particle complex as a source-oriented external mixture. Journal of Geophysical Research, 1997, 102, 21355-21372.	3.3	103
22	Source Apportionment of Secondary Airborne Particulate Matter in a Polluted Atmosphere. Environmental Science & Technology, 2002, 36, 5376-5384.	10.0	103
23	Sources and contents of air pollution affecting term low birth weight in Los Angeles County, California, 2001–2008. Environmental Research, 2014, 134, 488-495.	7.5	103
24	A preliminary assessment of the sensitivity of air quality in California to global change. Climatic Change, 2008, 87, 273-292.	3.6	97
25	A Statewide Nested Case–Control Study of Preterm Birth and Air Pollution by Source and Composition: California, 2001–2008. Environmental Health Perspectives, 2016, 124, 1479-1486.	6.0	94
26	Size and Composition Distribution of Atmospheric Particles in Southern California. Environmental Science & Technology, 1999, 33, 3506-3515.	10.0	93
27	Size and Composition Distributions of Particulate Matter Emissions: Part 1—Light-Duty Gasoline Vehicles. Journal of the Air and Waste Management Association, 2007, 57, 1414-1428.	1.9	91
28	Large PAHs detected in fine particulate matter emitted from light-duty gasoline vehicles. Atmospheric Environment, 2007, 41, 8658-8668.	4.1	91
29	Dominant Mechanisms that Shape the Airborne Particle Size and Composition Distribution in Central California. Aerosol Science and Technology, 2006, 40, 827-844.	3.1	83
30	Composition and Toxicity of Biogas Produced from Different Feedstocks in California. Environmental Science & Technology, 2019, 53, 11569-11579.	10.0	80
31	Source Contributions to the Size and Composition Distribution of Atmospheric Particles:Â Southern California in September 1996. Environmental Science & Technology, 1999, 33, 4331-4341.	10.0	78
32	Low birth weight and air pollution in California: Which sources and components drive the risk?. Environment International, 2016, 92-93, 471-477.	10.0	74
33	Seasonal modeling of PM2.5 in California's San Joaquin Valley. Atmospheric Environment, 2014, 92, 182-190.	4.1	73
34	Size and Composition Distributions of Particulate Matter Emissions: Part 2—Heavy-Duty Diesel Vehicles. Journal of the Air and Waste Management Association, 2007, 57, 1429-1438.	1.9	72
35	Identifying PM _{2.5} and PM _{0.1} Sources for Epidemiological Studies in California. Environmental Science & Technology, 2014, 48, 4980-4990.	10.0	72
36	Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions. Environmental Science & Technology, 2020, 54, 8568-8579.	10.0	72

#	Article	IF	CITATIONS
37	Secondary organic aerosol 3. Urban/regional scale model of size- and composition-resolved aerosols. Journal of Geophysical Research, 2002, 107, AAC 5-1-AAC 5-14.	3.3	71
38	Source Apportionment of Fine (PM _{1.8}) and Ultrafine (PM _{0.1}) Airborne Particulate Matter during a Severe Winter Pollution Episode. Environmental Science & Technology, 2009, 43, 272-279.	10.0	69
39	The Ozone–Climate Penalty: Past, Present, and Future. Environmental Science & Technology, 2013, 47, 14258-14266.	10.0	69
40	Updating the SAPRC Maximum Incremental Reactivity (MIR) scale for the United States from 1988 to 2010. Journal of the Air and Waste Management Association, 2018, 68, 1301-1316.	1.9	69
41	Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area. Environmental Science & Technology, 2013, 47, 10171-10178.	10.0	65
42	Size Distribution of Trace Organic Species Emitted from Heavy-Duty Diesel Vehicles. Environmental Science & Technology, 2007, 41, 1962-1969.	10.0	62
43	Reactive Organic Gas Emissions from Livestock Feed Contribute Significantly to Ozone Production in Central California. Environmental Science & Technology, 2010, 44, 2309-2314.	10.0	60
44	Copyright 2005 Air & Waste Management Association Size and Composition Distribution of Airborne Particulate Matter in Northern California: l—Particulate Mass, Carbon, and Water-Soluble Ions. Journal of the Air and Waste Management Association, 2005, 55, 30-51.	1.9	57
45	Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses. Atmospheric Chemistry and Physics, 2016, 16, 3041-3059.	4.9	57
46	Volatile organic compound emissions from green waste composting: Characterization and ozone formation. Atmospheric Environment, 2011, 45, 1841-1848.	4.1	56
47	Predicting Primary PM _{2.5} and PM _{0.1} Trace Composition for Epidemiological Studies in California. Environmental Science & amp; Technology, 2014, 48, 4971-4979.	10.0	56
48	Source apportionment of secondary organic aerosol during a severe photochemical smog episode. Atmospheric Environment, 2007, 41, 576-591.	4.1	55
49	LCâ MS Analysis of Carbonyl Compounds and Their Occurrence in Diesel Emissions. Analytical Chemistry, 2006, 78, 5086-5093.	6.5	54
50	Carbonyl Emissions from Gasoline and Diesel Motor Vehicles. Environmental Science & Technology, 2008, 42, 4697-4703.	10.0	53
51	Verification of a source-oriented externally mixed air quality model during a severe photochemical smog episode. Atmospheric Environment, 2007, 41, 1521-1538.	4.1	50
52	A comparison of the UCD/CIT air quality model and the CMB source–receptor model for primary airborne particulate matter. Atmospheric Environment, 2005, 39, 2281-2297.	4.1	48
53	Source apportionment of wintertime secondary organic aerosol during the California regional PM10/PM2.5 air quality study. Atmospheric Environment, 2010, 44, 1331-1340.	4.1	46
54	Relationships between greenness and low birth weight: Investigating the interaction and mediation effects of air pollution Environmental Research, 2019, 175, 124-132.	7.5	45

#	Article	IF	CITATIONS
55	Particulate air quality model predictions using prognostic vs. diagnostic meteorology in central California. Atmospheric Environment, 2010, 44, 215-226.	4.1	43
56	Size Distribution of Particle-Phase Molecular Markers during a Severe Winter Pollution Episode. Environmental Science & Technology, 2008, 42, 6469-6475.	10.0	40
57	Effect of Emissions Control Strategies on the Size and Composition Distribution of Urban Particulate Air Pollution. Environmental Science & amp; Technology, 1999, 33, 177-189.	10.0	39
58	Source Apportionment of Visibility Impairment Using a Three-Dimensional Source-Oriented Air Quality Model. Environmental Science & Technology, 2004, 38, 1089-1101.	10.0	39
59	Size-Resolved Source Apportionment of Airborne Particle Mass in a Roadside Environment. Environmental Science & Technology, 2008, 42, 6580-6586.	10.0	39
60	Water uptake by organic aerosol and its influence on gas/particle partitioning of secondary organic aerosol in the United States. Atmospheric Environment, 2016, 129, 142-154.	4.1	39
61	Control strategies for the reduction of airborne particulate nitrate in California's San Joaquin Valley. Atmospheric Environment, 2005, 39, 5325-5341.	4.1	38
62	Size-resolved source apportionment of carbonaceous particulate matter in urban and rural sites in central California. Atmospheric Environment, 2011, 45, 3988-3995.	4.1	38
63	Real-Time Emission Factor Measurements of Isocyanic Acid from Light Duty Gasoline Vehicles. Environmental Science & Technology, 2014, 48, 11405-11412.	10.0	38
64	Performance analysis of membrane separation for upgrading biogas to biomethane at small scale production sites. Biomass and Bioenergy, 2019, 128, 105314.	5.7	38
65	Detection of Alkaline Ultrafine Atmospheric Particles at Bakersfield, California. Environmental Science & Technology, 2001, 35, 2184-2190.	10.0	37
66	Implementation of a high-resolution Source-Oriented WRF/Chem model at the Port of Oakland. Atmospheric Environment, 2014, 82, 351-363.	4.1	37
67	Improve regional distribution and source apportionment of PM2.5 trace elements in China using inventory-observation constrained emission factors. Science of the Total Environment, 2018, 624, 355-365.	8.0	37
68	Predicted ultrafine particulate matter source contribution across the continental United States during summertime air pollution events. Atmospheric Chemistry and Physics, 2019, 19, 9399-9412.	4.9	37
69	Statistical downscaling of climate change impacts on ozone concentrations in California. Journal of Geophysical Research, 2008, 113, .	3.3	36
70	Real-Time Black Carbon Emission Factor Measurements from Light Duty Vehicles. Environmental Science & Technology, 2013, 47, 13104-13112.	10.0	36
71	The Impact of Climate Change on Air Quality–Related Meteorological Conditions in California. Part I: Present Time Simulation Analysis. Journal of Climate, 2011, 24, 3344-3361.	3.2	32
72	Investigating diesel engines as an atmospheric source of isocyanic acid in urban areas. Atmospheric Chemistry and Physics, 2017, 17, 8959-8970.	4.9	32

#	Article	IF	CITATIONS
73	Regional sources of airborne ultrafine particle number and mass concentrations in California. Atmospheric Chemistry and Physics, 2019, 19, 14677-14702.	4.9	32
74	Mobile Source and Livestock Feed Contributions to Regional Ozone Formation in Central California. Environmental Science & Technology, 2012, 46, 2781-2789.	10.0	31
75	Airborne particles in the San Joaquin Valley may affect human health. California Agriculture, 2010, 64, 12-16.	0.8	31
76	Effect of Emissions Control Programs on Visibility in Southern California. Environmental Science & Technology, 2001, 35, 4668-4674.	10.0	30
77	Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 3: Assessing the influence of semi-volatile and intermediate-volatility organic compounds and NO _{<i>x</i>} . Atmospheric Chemistry and Physics. 2019. 19. 4561-4594.	4.9	29
78	Size Distribution of Trace Organic Species Emitted from Light-Duty Gasoline Vehicles. Environmental Science & Technology, 2007, 41, 7464-7471.	10.0	28
79	Direct Measurements of the Ozone Formation Potential from Livestock and Poultry Waste Emissions. Environmental Science & Technology, 2010, 44, 2292-2298.	10.0	28
80	Daily Trends and Source Apportionment of Ultrafine Particulate Mass (PM _{0.1}) over an Annual Cycle in a Typical California City. Environmental Science & Technology, 2013, 47, 13957-13966.	10.0	27
81	Molecular view modeling of atmospheric organic particulate matter: Incorporating molecular structure and co-condensation of water. Atmospheric Environment, 2015, 122, 400-408.	4.1	27
82	Influence of regional development policies and clean technology adoption on future air pollution exposure. Atmospheric Environment, 2010, 44, 552-562.	4.1	26
83	Long-term particulate matter modeling for health effect studies in California – Part 2: Concentrations and sources of ultrafine organic aerosols. Atmospheric Chemistry and Physics, 2017, 17, 5379-5391.	4.9	26
84	Effects of aerosol UV extinction on the formation of ozone and secondary particulate matter. Atmospheric Environment, 2003, 37, 5047-5068.	4.1	23
85	Direct measurements of the ozone formation potential from dairy cattle emissions using a transportable smog chamber. Atmospheric Environment, 2008, 42, 5267-5277.	4.1	22
86	PM2.5 co-benefits of climate change legislation part 1: California's AB 32. Climatic Change, 2013, 117, 377-397.	3.6	22
87	Organic Aerosol Particle Chemical Properties Associated With Residential Burning and Fog in Wintertime San Joaquin Valley (Fresno) and With Vehicle and Firework Emissions in Summertime South Coast Air Basin (Fontana). Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,707.	3.3	22
88	Evaluation of an Air Quality Model for the Size and Composition of Source-Oriented Particle Classes. Environmental Science & Technology, 2002, 36, 2154-2163.	10.0	21
89	Resolving the interactions between population density and air pollution emissions controls in the San Joaquin Valley, USA. Journal of the Air and Waste Management Association, 2012, 62, 566-575.	1.9	21
90	Volatility of Primary Organic Aerosol Emitted from Light Duty Gasoline Vehicles. Environmental Science & Technology, 2015, 49, 1569-1577.	10.0	21

#	Article	IF	CITATIONS
91	Ultrafine Particle Emissions from Natural Gas, Biogas, and Biomethane Combustion. Environmental Science & Technology, 2018, 52, 13619-13628.	10.0	21
92	Low-carbon energy generates public health savings in California. Atmospheric Chemistry and Physics, 2018, 18, 4817-4830.	4.9	20
93	Seasonal and Annual Source Appointment of Carbonaceous Ultrafine Particulate Matter (PM _{0.1}) in Polluted California Cities. Environmental Science & Technology, 2019, 53, 39-49.	10.0	20
94	Particulate Matter Emissions Reductions due to Adoption of Clean Diesel Technology at a Major Shipping Port. Aerosol Science and Technology, 2013, 47, 29-36.	3.1	18
95	Influence of Season and Location on Pulmonary Response to California's San Joaquin Valley Airborne Particulate Matter. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 253-271.	2.3	17
96	PM2.5 co-benefits of climate change legislation part 2: California governor's executive order S-3-05 applied to the transportation sector. Climatic Change, 2013, 117, 399-414.	3.6	17
97	Positive matrix factorization of ultrafine particle mass (PM0.1) at three sites in California. Science of the Total Environment, 2020, 715, 136902.	8.0	17
98	Size Distribution of Health-Relevant Trace Elements in Airborne Particulate Matter During a Severe Winter Stagnation Event: Implications for Epidemiology and Inhalation Exposure Studies. Aerosol Science and Technology, 2010, 44, 753-765.	3.1	16
99	The Impact of Climate Change on Air Quality–Related Meteorological Conditions in California. Part II: Present versus Future Time Simulation Analysis. Journal of Climate, 2011, 24, 3362-3376.	3.2	16
100	Using Chemical Transport Model Predictions To Improve Exposure Assessment of PM _{2.5} Constituents. Environmental Science and Technology Letters, 2019, 6, 456-461.	8.7	16
101	Separately resolving NOx and VOC contributions to ozone formation. Atmospheric Environment, 2022, 285, 119224.	4.1	16
102	Identifying the effect of individual emissions sources on particulate air quality within a photochemical aerosol processes trajectory model. Atmospheric Environment, 1999, 33, 4597-4613.	4.1	15
103	Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California. Science of the Total Environment, 2015, 538, 412-422.	8.0	13
104	Analysis of SAPRC16 chemical mechanism for ambient simulations. Atmospheric Environment, 2018, 192, 136-150.	4.1	13
105	Statistical analysis of trace contaminants measured in biogas. Science of the Total Environment, 2020, 729, 138702.	8.0	13
106	Source apportionment of visual impairment during the California regional PM10/PM2.5 air quality study. Atmospheric Environment, 2009, 43, 6136-6144.	4.1	12
107	Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California. Atmospheric Chemistry and Physics, 2016, 16, 8353-8374.	4.9	11
108	Modeling Atmospheric Age Distribution of Elemental Carbon Using a Regional Age-Resolved Particle Representation Framework. Environmental Science & Technology, 2019, 53, 270-278.	10.0	11

#	Article	IF	CITATIONS
109	Chemical and Toxicological Properties of Emissions from a Light-Duty Compressed Natural Gas Vehicle Fueled with Renewable Natural Gas. Environmental Science & Technology, 2021, 55, 2820-2830.	10.0	10
110	Determination of Volatile Organic Compound Emissions and Ozone Formation from Spraying Solventâ€based Pesticides. Journal of Environmental Quality, 2011, 40, 1423-1431.	2.0	9
111	Future emissions of particles and gases that cause regional air pollution in California under different greenhouse gas mitigation strategies. Atmospheric Environment, 2022, 273, 118960.	4.1	9
112	Adoption of low-carbon fuels reduces race/ethnicity disparities in air pollution exposure in California. Science of the Total Environment, 2022, 834, 155230.	8.0	9
113	Direct observation of the break-up of a nocturnal inversion layer using elemental mercury as a tracer. Geophysical Research Letters, 2008, 35, .	4.0	8
114	Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE) model v1.0. Geoscientific Model Development, 2018, 11, 1293-1320.	3.6	8
115	Direct measurements of ozone response to emissions perturbations in California. Atmospheric Chemistry and Physics, 2022, 22, 4929-4949.	4.9	8
116	Atmospheric Age Distribution of Primary and Secondary Inorganic Aerosols in a Polluted Atmosphere. Environmental Science & Technology, 2021, 55, 5668-5676.	10.0	7
117	Day-of-week patterns for ultrafine particulate matter components at four sites in California. Atmospheric Environment, 2020, 222, 117088.	4.1	5
118	Improvement of aerosol activation/ice nucleation in a source-oriented WRF-Chem model to study a winter Storm in California. Atmospheric Research, 2020, 235, 104790.	4.1	5
119	Improving spatial surrogates for area source emissions inventories in California. Atmospheric Environment, 2021, 247, 117665.	4.1	5
120	Theoretical versus Observed Gas-Particle Partitioning of Carbonyl Emissions from Motor Vehicles. Journal of the Air and Waste Management Association, 2010, 60, 1237-1244.	1.9	4
121	Diversity of Carbonyl Compounds in Biogas and Natural Gas Revealed Using High-Resolution Mass Spectrometry and Nontarget Analysis. Environmental Science & Technology, 2021, 55, 12809-12817.	10.0	1
122	THE CHEMICAL COMPOSITION OF ATMOSPHERIC ULTRAFINE PARTICLES. , 2003, , 19-35.		0
123	Effects of Lowâ€Carbon Energy Adoption on Airborne Particulate Matter Concentrations With Feedbacks to Future Climate Over California. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032636.	3.3	0
124	Comparison of size-resolved PM elements measured using aluminum foil and Teflon impaction substrates: Implications for ultrafine particle source apportionment and future sampling networks in California. Science of the Total Environment, 2022, 838, 156523.	8.0	0