Elena Boto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2560858/publications.pdf

Version: 2024-02-01

304743 526287 2,884 27 22 27 citations h-index g-index papers 31 31 31 1486 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 2018, 555, 657-661.	27.8	795
2	A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. Neurolmage, 2017, 149, 404-414.	4.2	329
3	Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography. Neurolmage, 2019, 199, 598-608.	4.2	186
4	Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. Neurolmage, 2020, 219, 116995.	4.2	164
5	A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography. Neurolmage, 2018, 181, 760-774.	4.2	143
6	On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study. PLoS ONE, 2016, 11, e0157655.	2.5	138
7	A tool for functional brain imaging with lifespan compliance. Nature Communications, 2019, 10, 4785.	12.8	96
8	Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging. Trends in Neurosciences, 2022, 45, 621-634.	8.6	91
9	Towards OPM-MEG in a virtual reality environment. NeuroImage, 2019, 199, 408-417.	4.2	87
10	Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography. Neurolmage, 2019, 201, 116099.	4.2	82
11	Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children. Neurolmage, 2022, 252, 119027.	4.2	76
12	Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. Neurolmage, 2021, 236, 118025.	4.2	73
13	Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography. Scientific Reports, 2019, 9, 14196.	3.3	72
14	Measuring functional connectivity with wearable MEG. Neurolmage, 2021, 230, 117815.	4.2	72
15	Optimising experimental design for MEG resting state functional connectivity measurement. Neurolmage, 2017, 155, 565-576.	4.2	67
16	Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function. Neurolmage, 2018, 181, 513-520.	4.2	56
17	Mouth magnetoencephalography: A unique perspective on the human hippocampus. NeuroImage, 2021, 225, 117443.	4.2	56
18	Precision magnetic field modelling and control for wearable magnetoencephalography. NeuroImage, 2021, 241, 118401.	4.2	54

#	Article	IF	CITATIONS
19	Imaging the human hippocampus with optically-pumped magnetoencephalography. NeuroImage, 2019, 203, 116192.	4.2	52
20	Optically pumped magnetoencephalography in epilepsy. Annals of Clinical and Translational Neurology, 2020, 7, 397-401.	3.7	43
21	Using OPM-MEG in contrasting magnetic environments. Neurolmage, 2022, 253, 119084.	4.2	33
22	Using optically pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum. Journal of Physiology, 2019, 597, 4309-4324.	2.9	31
23	Pragmatic spatial sampling for wearable MEG arrays. Scientific Reports, 2020, 10, 21609.	3.3	23
24	Measuring the cortical tracking of speech with optically-pumped magnetometers. NeuroImage, 2021, 233, 117969.	4.2	22
25	Dataâ€driven model optimization for optically pumped magnetometer sensor arrays. Human Brain Mapping, 2019, 40, 4357-4369.	3.6	16
26	Practical real-time MEG-based neural interfacing with optically pumped magnetometers. BMC Biology, 2021, 19, 158.	3.8	14
27	Magnetoencephalography Using Optically Pumped Magnetometers. , 2020, , 104-124.		1