Abbas Khaleel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2560434/publications.pdf Version: 2024-02-01

APPAC KUNIEEL

#	Article	IF	CITATIONS
1	Biomimetic PLGA/Strontium-Zinc Nano Hydroxyapatite Composite Scaffolds for Bone Regeneration. Journal of Functional Biomaterials, 2022, 13, 13.	4.4	19
2	Field-dependent Morin Transition and Temperature-Dependent Spin-flop in Synthetic Hematite Nanoparticles. Current Nanoscience, 2021, 16, 967-975.	1.2	4
3	Immobilized Soybean Peroxidase Hybrid Biocatalysts for Efficient Degradation of Various Emerging Pollutants. Biomolecules, 2021, 11, 904.	4.0	15
4	Enhanced selectivity of syngas in partial oxidation of methane: A new route for promising Niâ€alumina catalysts derived from Ni/ <scp>γâ€AlOOH</scp> with modified Ni dispersion. International Journal of Energy Research, 2020, 44, 12081-12099.	4.5	6
5	Positive and negative exchange bias in maghemite nanoparticles. Materials Today: Proceedings, 2020, 28, 611-614.	1.8	1
6	Tunable band gap of Bi3+-doped anatase TiO2 for enhanced photocatalytic removal of acetaminophen under UV-visible light irradiation. Journal of Water Reuse and Desalination, 2019, 9, 31-46.	2.3	26
7	Role of Shell Thickness and Applied Field on The Magnetic Anisotropy and Temperature Dependence of Coercivity in Fe3O4 /γ-Fe2O3 Core/shell Nanoparticles. Materials Express, 2019, 9, 123-132.	0.5	3
8	Ti-doped Î ³ -Al2O3 versus ZSM5 zeolites for methanol to dimethyl ether conversion: In-situ DRIFTS investigation of surface interactions and reaction mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 571, 174-181.	4.7	9
9	Construction of BiOF/BiOI nanocomposites with tunable band gaps as efficient visible-light photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 30-39.	3.9	31
10	Ti(IV)-doped γ-Fe2O3 nanoparticles possessing unique textural and chemical properties: Enhanced suppression of phase transformation and promising catalytic activity. Journal of Solid State Chemistry, 2018, 259, 91-97.	2.9	5
11	Structural, Textural, and Catalytic Properties of Ti(IV)â€Fe(III) Mixed Oxides Prepared by a Modified Solâ€Gel Route. ChemistrySelect, 2017, 2, 791-799.	1.5	1
12	The effect of composition and gel treatment conditions on the textural properties, reducibility, and catalytic activity of sol–gel-prepared Fe(III)–Cr(III) bulk mixed oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 488, 52-57.	4.7	8
13	Enhanced catalytic complete oxidation of 1,2-dichloroethane over mesoporous transition metal-doped γ-Al2O3. Journal of Environmental Sciences, 2015, 29, 199-209.	6.1	12
14	United Arab Emirates limestones: impact of petrography on thermal behavior. Mineralogy and Petrology, 2014, 108, 837-852.	1.1	5
15	Host–guest complexes of cucurbit[7]uril with albendazole in solid state. Journal of Thermal Analysis and Calorimetry, 2013, 111, 385-392.	3.6	23
16	Sol–gel derived Cr(III) and Cu(II)/γ-Al2O3 doped solids: Effect of the dopant precursor nature on the structural, textural and morphological properties. Materials Research Bulletin, 2013, 48, 1709-1715.	5.2	5
17	The effect of metal ion dopants (V3+, Cr3+, Fe3+, Mn2+, Ce3+) and their concentration on the morphology and the texture of doped γ-alumina. Microporous and Mesoporous Materials, 2013, 168, 7-14.	4.4	14
18	Rheological characteristics of nickel–alumina sol–gel catalyst. Fuel Processing Technology, 2012, 102, 85-89.	7.2	5

ABBAS KHALEEL

#	Article	IF	CITATIONS
19	Unique textural properties of titanium-doped alumina via sol–gel synthesis under non-acidic conditions. Materials Letters, 2012, 68, 11-13.	2.6	1
20	Alkoxide-free sol–gel synthesis of aerogel iron–chromium mixed oxides with unique textural properties. Materials Letters, 2012, 68, 385-387.	2.6	10
21	Titanium-doped alumina for catalytic dehydration of methanol to dimethyl ether at relatively low temperatures. Fuel, 2011, 90, 2422-2427.	6.4	22
22	Catalytic conversion of chloromethane to methanol and dimethyl ether over mesoporous γ-alumina. Fuel Processing Technology, 2011, 92, 1783-1789.	7.2	12
23	Methanol dehydration to dimethyl ether over highly porous xerogel alumina catalyst: Flow rate effect. Fuel Processing Technology, 2010, 91, 1505-1509.	7.2	25
24	Nanostructured chromium–iron mixed oxides: Physicochemical properties and catalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 355, 75-82.	4.7	23
25	Meso-macroporous γ-alumina by template-free sol–gel synthesis: The effect of the solvent and acid catalyst on the microstructure and textural properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 369, 272-280.	4.7	34
26	Structural and textural characterization of sol–gel prepared nanoscale titanium–chromium mixed oxides. Journal of Non-Crystalline Solids, 2010, 356, 1282-1287.	3.1	13
27	Sol–gel synthesis, characterization, and catalytic activity of Fe(III) titanates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 130-137.	4.7	32
28	Supported and mixed oxide catalysts based on iron and titanium for the oxidative decomposition of chlorobenzene. Applied Catalysis B: Environmental, 2008, 80, 176-184.	20.2	69
29	Catalytic activity of mesoporous alumina for the hydrolysis and dechlorination of carbon tetrachloride. Microporous and Mesoporous Materials, 2006, 91, 53-58.	4.4	27
30	Nanostructured PureÎ ³ -Fe2O3 via Forced Precipitation in an Organic Solvent. Chemistry - A European Journal, 2004, 10, 925-932.	3.3	58
31	FTIR Investigation of Adsorption and Chemical Decomposition of CCl4by High Surface-Area Aluminum Oxide. Environmental Science & Technology, 2002, 36, 1620-1624.	10.0	44
32	Catalyzed Destructive Adsorption of Environmental Toxins with Nanocrystalline Metal Oxides. Fluoro-, Chloro-, Bromocarbons, Sulfur, and Organophosophorus Compounds. Environmental Science & Technology, 2002, 36, 762-768.	10.0	94
33	Nanocrystalline Metal Oxides as Unique Chemical Reagents/Sorbents. Chemistry - A European Journal, 2001, 7, 2505-2510.	3.3	191
34	Photochemical synthesis of new (η6-arene)Cr–hydrido stannyl and (η6-arene)Cr–bis-stannyl complexes. Ligand effects on the Sn–H interaction in the hydrido stannyl compounds. Journal of Organometallic Chemistry, 1999, 572, 11-20.	1.8	11
35	Nanocrystals as stoichiometric reagents with unique surface chemistry. New adsorbents for air purification. Scripta Materialia, 1999, 12, 463-466.	0.5	28
36	Nanocrystalline metal oxides as new adsorbents for air purification. Scripta Materialia, 1999, 11, 459-468.	0.5	120

#	Article	IF	CITATIONS
37	Photochemical Synthesis of (η6-Arene)chromium Hydrido Stannyl and (η6-Arene)chromium Bis(stannyl) Complexes. Inorganic Chemistry, 1996, 35, 3223-3227.	4.0	14