Adriano Aguzzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2559594/publications.pdf

Version: 2024-02-01

441 papers 42,024 citations

103 h-index 188 g-index

509 all docs

509 docs citations

509 times ranked 34510 citing authors

#	Article	IF	Citations
1	Mice devoid of PrP are resistant to scrapie. Cell, 1993, 73, 1339-1347.	13.5	1,989
2	Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature, 1995, 376, 768-771.	13.7	1,202
3	An Analytical Solution to the Kinetics of Breakable Filament Assembly. Science, 2009, 326, 1533-1537.	6.0	970
4	Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature, 1996, 379, 339-343.	13.7	756
5	Microglia: Scapegoat, Saboteur, or Something Else?. Science, 2013, 339, 156-161.	6.0	726
6	Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nature Medicine, 2005, 11, 146-152.	15.2	667
7	The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation. Nature Immunology, 2014, 15, 727-737.	7.0	651
8	Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nature Reviews Drug Discovery, 2010, 9, 237-248.	21.5	639
9	p62 Is a Common Component of Cytoplasmic Inclusions in Protein Aggregation Diseases. American Journal of Pathology, 2002, 160, 255-263.	1.9	550
10	Mammalian Prion Biology. Cell, 2004, 116, 313-327.	13.5	531
11	c-Jun is essential for normal mouse development and hepatogenesis. Nature, 1993, 365, 179-181.	13.7	522
12	Expression of Amino-Terminally Truncated PrP in the Mouse Leading to Ataxia and Specific Cerebellar Lesions. Cell, 1998, 93, 203-214.	13.5	506
13	A crucial role for B cells in neuroinvasive scrapie. Nature, 1997, 390, 687-690.	13.7	484
14	The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nature Genetics, 1999, 22, 276-280.	9.4	476
15	Prions: Protein Aggregation and Infectious Diseases. Physiological Reviews, 2009, 89, 1105-1152.	13.1	443
16	The AP-1 Transcription Factor c-Jun Is Required for Efficient Axonal Regeneration. Neuron, 2004, 43, 57-67.	3.8	429
17	Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nature Medicine, 2004, 10, 187-192.	15.2	417
18	The Transcellular Spread of Cytosolic Amyloids, Prions, and Prionoids. Neuron, 2009, 64, 783-790.	3.8	414

#	Article	IF	Citations
19	Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutyric acid type A receptors Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7749-7753.	3.3	403
20	Genetic prion disease: the EUROCJD experience. Human Genetics, 2005, 118, 166-174.	1.8	391
21	Formation and maintenance of Alzheimer's disease \hat{l}^2 -amyloid plaques in the absence of microglia. Nature Neuroscience, 2009, 12, 1361-1363.	7.1	390
22	The Prion's Elusive Reason for Being. Annual Review of Neuroscience, 2008, 31, 439-477.	5.0	379
23	Neuropathological Diagnostic Criteria for Creutzfeldtâ€Jakob Disease (CJD) and Other Human Spongiform Encephalopathies (Prion Diseases). Brain Pathology, 1995, 5, 459-466.	2.1	378
24	Axonal prion protein is required for peripheral myelin maintenance. Nature Neuroscience, 2010, 13, 310-318.	7.1	357
25	Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice. Nature Genetics, 1995, 11, 274-280.	9.4	347
26	A Lymphotoxin-Driven Pathway to Hepatocellular Carcinoma. Cancer Cell, 2009, 16, 295-308.	7.7	345
27	Impaired Prion Replication in Spleens of Mice Lacking Functional Follicular Dendritic Cells. Science, 2000, 288, 1257-1259.	6.0	341
28	Prevention of Scrapie Pathogenesis by Transgenic Expression of Anti-Prion Protein Antibodies. Science, 2001, 294, 178-182.	6.0	334
29	Follicular Dendritic Cells Emerge from Ubiquitous Perivascular Precursors. Cell, 2012, 150, 194-206.	13.5	329
30	Systemic and mucosal antibody responses specific to SARS-CoV-2 during mild versus severe COVID-19. Journal of Allergy and Clinical Immunology, 2021, 147, 545-557.e9.	1.5	316
31	Molecular Mechanisms of Prion Pathogenesis. Annual Review of Pathology: Mechanisms of Disease, 2008, 3, 11-40.	9.6	311
32	The absence of c-fos prevents light-induced apoptotic cell death of photoreceptors in retinal degeneration in vivo. Nature Medicine, 1997, 3, 346-349.	15.2	301
33	Complement facilitates early prion pathogenesis. Nature Medicine, 2001, 7, 488-492.	15.2	301
34	Extraneural Pathologic Prion Protein in Sporadic Creutzfeldt–Jakob Disease. New England Journal of Medicine, 2003, 349, 1812-1820.	13.9	299
35	Phase Separation: Linking Cellular Compartmentalization to Disease. Trends in Cell Biology, 2016, 26, 547-558.	3.6	291
36	Novel Pentameric Thiophene Derivatives for <i>in Vitro</i> and <i>in Vivo</i> Optical Imaging of a Plethora of Protein Aggregates in Cerebral Amyloidoses. ACS Chemical Biology, 2009, 4, 673-684.	1.6	290

#	Article	IF	CITATIONS
37	Insights into prion strains and neurotoxicity. Nature Reviews Molecular Cell Biology, 2007, 8, 552-561.	16.1	288
38	Measles Virus Spread and Pathogenesis in Genetically Modified Mice. Journal of Virology, 1998, 72, 7420-7427.	1.5	279
39	Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nature Genetics, 2013, 45, 1077-1082.	9.4	273
40	Prion strain discrimination using luminescent conjugated polymers. Nature Methods, 2007, 4, 1023-1030.	9.0	261
41	Endothelial CCR2 Signaling Induced by Colon Carcinoma Cells Enables Extravasation via the JAK2-Stat5 and p38MAPK Pathway. Cancer Cell, 2012, 22, 91-105.	7.7	256
42	The Complex PrP ^c -Fyn Couples Human Oligomeric $\hat{Al^2}$ with Pathological Tau Changes in Alzheimer's Disease. Journal of Neuroscience, 2012, 32, 16857-16871.	1.7	254
43	PrP expression in B lymphocytes is not required for prion neuroinvasion. Nature Medicine, 1998, 4, 1429-1433.	15.2	253
44	Prion Protein Devoid of the Octapeptide Repeat Region Restores Susceptibility to Scrapie in PrP Knockout Mice. Neuron, 2000, 27, 399-408.	3.8	252
45	Endothelioma cells expressing the polyoma middle T oncogene induce hemangiomas by host cell recruitment. Cell, 1989, 57, 1053-1063.	13.5	251
46	PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature, 1997, 389, 69-73.	13.7	251
47	Induction of cerebral \hat{l}^2 -amyloidosis: Intracerebral versus systemic $A\hat{l}^2$ inoculation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12926-12931.	3.3	249
48	A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO Journal, 1998, 17, 3899-3908.	3.5	245
49	Impaired Differentiation of Schwann Cells in Transgenic Mice with Increased <i>PMP22</i> Gene Dosage. Journal of Neuroscience, 1996, 16, 5351-5360.	1.7	234
50	Prion protein and Aβâ€related synaptic toxicity impairment. EMBO Molecular Medicine, 2010, 2, 306-314.	3.3	234
51	High Prion and PrPSc Levels but Delayed Onset of Disease in Scrapie-Inoculated Mice Heterozygous for a Disrupted PrP Gene. Molecular Medicine, 1994, 1, 19-30.	1.9	226
52	Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2-/-Âc-/- mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15951-15956.	3.3	224
53	Sympathetic Innervation of Lymphoreticular Organs Is Rate Limiting for Prion Neuroinvasion. Neuron, 2001, 31, 25-34.	3.8	223
54	Games Played by Rogue Proteins in Prion Disorders and Alzheimer's Disease. Science, 2003, 302, 814-818.	6.0	220

#	Article	IF	CITATIONS
55	Prions, prionoids and protein misfolding disorders. Nature Reviews Genetics, 2018, 19, 405-418.	7.7	218
56	Prion research: the next frontiers. Nature, 1997, 389, 795-798.	13.7	213
57	Binding of disease-associated prion protein to plasminogen. Nature, 2000, 408, 479-483.	13.7	211
58	Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18150-18155.	3.3	210
59	Transepithelial prion transport by M cells. Nature Medicine, 2001, 7, 976-977.	15.2	209
60	Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO Journal, 2007, 26, 538-547.	3.5	202
61	Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature, 2003, 425, 957-962.	13.7	195
62	Coexistence of multiple PrPSc types in individuals with Creutzfeldt-Jakob disease. Lancet Neurology, The, 2005, 4, 805-814.	4.9	192
63	Pathogenesis of prion diseases: current status and future outlook. Nature Reviews Microbiology, 2006, 4, 765-775.	13.6	192
64	The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 2013, 501, 102-106.	13.7	191
65	The biological function of the cellular prion protein: an update. BMC Biology, 2017, 15, 34.	1.7	190
66	De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 304-309.	3.3	185
67	Chronic Lymphocytic Inflammation Specifies the Organ Tropism of Prions. Science, 2005, 307, 1107-1110.	6.0	183
68	IL-6 is required for glioma development in a mouse model. Oncogene, 2004, 23, 3308-3316.	2.6	177
69	The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nature Methods, 2019, 16, 1105-1108.	9.0	174
70	Coincident Scrapie Infection and Nephritis Lead to Urinary Prion Excretion. Science, 2005, 310, 324-326.	6.0	171
71	The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6. Nature, 2016, 536, 464-468.	13.7	169
72	Beyond the prion principle. Nature, 2009, 459, 924-925.	13.7	168

#	Article	IF	CITATIONS
73	Quantitative and Integrative Proteome Analysis of Peripheral Nerve Myelin Identifies Novel Myelin Proteins and Candidate Neuropathy Loci. Journal of Neuroscience, 2011, 31, 16369-16386.	1.7	164
74	The POM Monoclonals: A Comprehensive Set of Antibodies to Non-Overlapping Prion Protein Epitopes. PLoS ONE, 2008, 3, e3872.	1.1	162
75	Follicular dendritic cells control engulfment of apoptotic bodies by secreting Mfge8. Journal of Experimental Medicine, 2008, 205, 1293-1302.	4.2	157
76	Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria. Nature Genetics, 1996, 12, 195-199.	9.4	156
77	Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice. Oncogene, 1997, 14, 2005-2013.	2.6	155
78	An essential function for NBS1 in the prevention of ataxia and cerebellar defects. Nature Medicine, 2005, 11, 538-544.	15.2	155
79	Human Toll-like receptor 2 mediates induction of the antimicrobial peptide human beta-defensin 2 in response to bacterial lipoprotein. European Journal of Immunology, 2001, 31, 3131-3137.	1.6	153
80	Absence of the prion protein homologue Doppel causes male sterility. EMBO Journal, 2002, 21, 3652-3658.	3.5	145
81	Genetic ablation of the tumor suppressor menin causes lethality at mid-gestation with defects in multiple organs. Mechanisms of Development, 2003, 120, 549-560.	1.7	145
82	The Prion Protein Knockout Mouse. Prion, 2007, 1, 83-93.	0.9	144
82	The Prion Protein Knockout Mouse. Prion, 2007, 1, 83-93. PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nature Medicine, 2005, 11, 1137-1138.	0.9	144
83	PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nature Medicine, 2005, 11, 1137-1138.	15.2	142
83	PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nature Medicine, 2005, 11, 1137-1138. Prions: health scare and biological challenge. Nature Reviews Molecular Cell Biology, 2001, 2, 118-126. Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt–Jakob disease and rapid dementias:	15.2 16.1	142
83 84 85	PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nature Medicine, 2005, 11, 1137-1138. Prions: health scare and biological challenge. Nature Reviews Molecular Cell Biology, 2001, 2, 118-126. Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt–Jakob disease and rapid dementias: a longitudinal multicentre study over 10 years. Brain, 2012, 135, 3051-3061.	15.2 16.1 3.7	142 137 135
83 84 85 86	PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nature Medicine, 2005, 11, 1137-1138. Prions: health scare and biological challenge. Nature Reviews Molecular Cell Biology, 2001, 2, 118-126. Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt–Jakob disease and rapid dementias: a longitudinal multicentre study over 10 years. Brain, 2012, 135, 3051-3061. A versatile prion replication assay in organotypic brain slices. Nature Neuroscience, 2008, 11, 109-117. Follicular dendritic cells: origin, phenotype, and function in health and disease. Trends in	15.2 16.1 3.7 7.1	142 137 135
83 84 85 86	PrPSc in mammary glands of sheep affected by scrapie and mastitis. Nature Medicine, 2005, 11, 1137-1138. Prions: health scare and biological challenge. Nature Reviews Molecular Cell Biology, 2001, 2, 118-126. Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt–Jakob disease and rapid dementias: a longitudinal multicentre study over 10 years. Brain, 2012, 135, 3051-3061. A versatile prion replication assay in organotypic brain slices. Nature Neuroscience, 2008, 11, 109-117. Follicular dendritic cells: origin, phenotype, and function in health and disease. Trends in Immunology, 2014, 35, 105-113. The Amyloid–Congo Red Interface at Atomic Resolution. Angewandte Chemie - International Edition,	15.2 16.1 3.7 7.1	142 137 135 133

#	Article	IF	Citations
91	Soluble Dimeric Prion Protein Binds PrPSc In Vivo and Antagonizes Prion Disease. Cell, 2003, 113, 49-60.	13.5	129
92	The immunobiology of prion diseases. Nature Reviews Immunology, 2013, 13, 888-902.	10.6	127
93	A neuroprotective role for microglia in prion diseases. Journal of Experimental Medicine, 2016, 213, 1047-1059.	4.2	127
94	Triggering TLR7 in mice induces immune activation and lymphoid system disruption, resembling HIV-mediated pathology. Blood, 2009, 113, 377-388.	0.6	126
95	Oral Prion Infection Requires Normal Numbers of Peyer's Patches but Not of Enteric Lymphocytes. American Journal of Pathology, 2003, 162, 1103-1111.	1.9	125
96	A molecular switch controls interspecies prion disease transmission in mice. Journal of Clinical Investigation, 2010, 120, 2590-2599.	3.9	124
97	Distal axonopathy in peripheral nerves of PMP22-mutant mice. Brain, 1999, 122, 1563-1577.	3.7	121
98	PrPC expression in the peripheral nervous system is a determinant of prion neuroinvasion. Journal of General Virology, 2000, 81, 2813-2821.	1.3	121
99	Engulfment of cerebral apoptotic bodies controls the course of prion disease in a mouse strain–dependent manner. Journal of Experimental Medicine, 2010, 207, 2271-2281.	4.2	115
100	Human Prion Diseases. Archives of Neurology, 2005, 62, 545.	4.9	113
101	Cell Biology of Prions and Prionoids: A Status Report. Trends in Cell Biology, 2016, 26, 40-51.	3.6	113
102	Cloning and Complete Primary Structure of the Mouse Laminin $\hat{l}\pm 3$ Chain. Journal of Biological Chemistry, 1995, 270, 21820-21826.	1.6	111
103	Developmental Expression of Nicein Adhesion Protein (Laminin-5) Subunits Suggests Multiple Morphogenic Roles. Cell Adhesion and Communication, 1994, 2, 115-129.	1.7	109
104	Humoral immune response to native eukaryotic prion protein correlates with anti-prion protection. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14670-14676.	3.3	105
105	Prion propagation, toxicity and degradation. Nature Neuroscience, 2012, 15, 936-939.	7.1	105
106	Hypersensitivity to seizures in \hat{l}^2 -amyloid precursor protein deficient mice. Cell Death and Differentiation, 1998, 5, 858-866.	5.0	104
107	Tissue Handling in Suspected Creutzfeldtâ€Jakob Disease (CJD) and Other Human Spongiform Encephalopathies (Prion Diseases). Brain Pathology, 1995, 5, 319-322.	2.1	103
108	Prion diseases of humans and farm animals: epidemiology, genetics, and pathogenesis. Journal of Neurochemistry, 2006, 97, 1726-1739.	2.1	102

#	Article	IF	Citations
109	The Strain-Encoded Relationship between PrPSc Replication, Stability and Processing in Neurons is Predictive of the Incubation Period of Disease. PLoS Pathogens, 2011, 7, e1001317.	2.1	102
110	Olfactory behavior and physiology are disrupted in prion protein knockout mice. Nature Neuroscience, 2009, 12, 60-69.	7.1	101
111	Strictly co-isogenic C57BL/6J- <i>Prnp</i> â^'/â^' mice: A rigorous resource for prion science. Journal of Experimental Medicine, 2016, 213, 313-327.	4.2	98
112	No Superoxide Dismutase Activity of Cellular Prion Protein in vivo. Biological Chemistry, 2003, 384, 1279-85.	1.2	97
113	Astrocyte Depletion Impairs Redox Homeostasis and Triggers Neuronal Loss in the Adult CNS. Cell Reports, 2015, 12, 1377-1384.	2.9	92
114	Intracerebral endotheliitis and microbleeds are neuropathological features of COVIDâ€19. Neuropathology and Applied Neurobiology, 2021, 47, 454-459.	1.8	92
115	Prions and the Immune System: A Journey Through Gut, Spleen, and Nerves. Advances in Immunology, 2003, 81, 123-171.	1.1	91
116	Analysis of Prion Strains by PrPSc Profiling in Sporadic Creutzfeldt–Jakob Disease. PLoS Medicine, 2005, 3, e14.	3.9	90
117	Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: Role of AMPA/kainate receptors. Journal of Neuroscience Research, 2007, 85, 2741-2755.	1.3	89
118	Globular Domain of the Prion Protein Needs to Be Unlocked by Domain Swapping to Support Prion Protein Conversion. Journal of Biological Chemistry, 2011, 286, 12149-12156.	1.6	89
119	Microglia in prion diseases. Journal of Clinical Investigation, 2017, 127, 3230-3239.	3.9	89
120	Amyloid- \hat{l}^2 pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt-Jakob disease after dural grafting. Swiss Medical Weekly, 2016, 146, w14287.	0.8	89
121	NEUROBIOLOGY:PrP's Double Causes Trouble. Science, 1999, 286, 914-915.	6.0	88
122	NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: What is the evidence?. Free Radical Biology and Medicine, 2017, 112, 387-396.	1.3	88
123	Approaches to Therapy of Prion Diseases. Annual Review of Medicine, 2005, 56, 321-344.	5.0	87
124	Inflammatory olfactory neuropathy in two patients with COVID-19. Lancet, The, 2020, 396, 166.	6.3	86
125	Pericytes regulate vascular immune homeostasis in the CNS. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	86
126	PrP-dependent association of prions with splenic but not circulating lymphocytes of scrapie-infected mice. EMBO Journal, 1999, 18, 2702-2706.	3.5	85

#	Article	IF	Citations
127	Incidence of Creutzfeldt-Jakob disease in Switzerland. Lancet, The, 2002, 360, 139-141.	6.3	84
128	Structural Typing of Systemic Amyloidoses by Luminescent-Conjugated Polymer Spectroscopy. American Journal of Pathology, 2010, 176, 563-574.	1.9	84
129	A suspicious signature. Nature, 1996, 383, 666-667.	13.7	82
130	Chronic Subclinical Prion Disease Induced by Low-Dose Inoculum. Journal of Virology, 2002, 76, 2510-2517.	1.5	82
131	The prion gene is associated with human long-term memory. Human Molecular Genetics, 2005, 14, 2241-2246.	1.4	82
132	Early and Rapid Engraftment of Bone Marrow-Derived Microglia in Scrapie. Journal of Neuroscience, 2006, 26, 11753-11762.	1.7	82
133	Truncated Prion Protein and Doppel Are Myelinotoxic in the Absence of Oligodendrocytic PrPC. Journal of Neuroscience, 2005, 25, 4879-4888.	1.7	81
134	Prions, prionoids and pathogenic proteins in Alzheimer disease. Prion, 2013, 7, 55-59.	0.9	81
135	Scrapie Pathogenesis in Subclinically Infected B-Cell-Deficient Mice. Journal of Virology, 1999, 73, 9584-9588.	1.5	80
136	Plasminogen binds to disease-associated prion protein of multiple species. Lancet, The, 2001, 357, 2026-2028.	6.3	79
137	Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice. Neurobiology of Disease, 2010, 39, 85-97.	2.1	79
138	Late Glial Swelling after Acute Cerebral Hypoxia-Ischemia in the Neonatal Rat: A Combined Magnetic Resonance and Histochemical Study. Pediatric Research, 1997, 42, 54-59.	1.1	79
139	Similar Turnover and Shedding of the Cellular Prion Protein in Primary Lymphoid and Neuronal Cells. Journal of Biological Chemistry, 2001, 276, 44627-44632.	1.6	78
140	Cerebrospinal fluid biomarkers in human genetic transmissible spongiform encephalopathies. Journal of Neurology, 2009, 256, 1620-1628.	1.8	77
141	Interventional strategies against prion diseases. Nature Reviews Neuroscience, 2001, 2, 745-749.	4.9	76
142	Prion Infections and Anti-PrP Antibodies Trigger Converging Neurotoxic Pathways. PLoS Pathogens, 2015, 11, e1004662.	2.1	76
143	Small is not beautiful: antagonizing functions for the prion protein PrPC and its homologue Dpl. Trends in Neurosciences, 2002, 25, 150-154.	4.2	7 5
144	Strain Fidelity of Chronic Wasting Disease upon Murine Adaptation. Journal of Virology, 2006, 80, 12303-12311.	1.5	74

#	Article	IF	Citations
145	Chronic wasting disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 610-618.	1.8	74
146	Paracrine Inhibition of Prion Propagation by Anti-PrP Single-Chain Fv Miniantibodies. Journal of Virology, 2005, 79, 8330-8338.	1.5	73
147	Prion pathogenesis in the absence of Tollâ€ike receptor signalling. EMBO Reports, 2003, 4, 195-199.	2.0	72
148	Neuro-immune connection in spread of prions in the body?. Lancet, The, 1997, 349, 742-743.	6.3	71
149	Prion Pathogenesis Is Faithfully Reproduced in Cerebellar Organotypic Slice Cultures. PLoS Pathogens, 2012, 8, e1002985.	2.1	71
150	Tissue-specific expression of a FMR1/ \hat{l}^2 -galactosidase fusion gene in transgenic mice. Human Molecular Genetics, 1995, 4, 359-366.	1.4	70
151	Transient Production of TGF- \hat{l}^2 2by Postnatal Cerebellar Neurons and its Effect on Neuroblast Proliferation. European Journal of Neuroscience, 1994, 6, 766-778.	1.2	69
152	A Highly Sensitive Immunofluorescence Procedure for Analyzing the Subcellular Distribution of GABAA Receptor Subunits in the Human Brain. Journal of Histochemistry and Cytochemistry, 1998, 46, 1129-1139.	1.3	69
153	Unraveling prion strains with cell biology and organic chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11-12.	3.3	69
154	The Comprehensive Native Interactome of a Fully Functional Tagged Prion Protein. PLoS ONE, 2009, 4, e4446.	1.1	69
155	Biphasic Edema after Hypoxic-Ischemic Brain Injury in Neonatal Rats Reflects Early Neuronal and Late Glial Damage. Pediatric Research, 1999, 46, 297-304.	1.1	69
156	Ablation of Dicer from Murine Schwann Cells Increases Their Proliferation while Blocking Myelination. PLoS ONE, 2010, 5, e12450.	1.1	69
157	The prion organotypic slice culture assayâ€"POSCA. Nature Protocols, 2008, 3, 555-562.	5.5	68
158	Efficient Lymphoreticular Prion Propagation Requires PrP c in Stromal and Hematopoietic Cells. Journal of Virology, 2001, 75, 7097-7106.	1.5	67
159	The role of calorie restriction and SIRT1 in prion-mediated neurodegeneration. Experimental Gerontology, 2008, 43, 1086-1093.	1.2	67
160	SIRPÎ \pm polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells. Journal of Experimental Medicine, 2013, 210, 2539-2552.	4.2	67
161	Prion Transmission Prevented by Modifying the $\hat{I}^22-\hat{I}\pm2$ Loop Structure of Host PrP ^C . Journal of Neuroscience, 2014, 34, 1022-1027.	1.7	67
162	Expression of truncated PrP targeted to Purkinje cells of PrP knockout mice causes Purkinje cell death and ataxia. EMBO Journal, 2003, 22, 3095-3101.	3.5	66

#	Article	IF	Citations
163	Antiprion immunotherapy: to suppress or to stimulate?. Nature Reviews Immunology, 2004, 4, 725-736.	10.6	66
164	Stromal Complement Receptor CD21/35 Facilitates Lymphoid Prion Colonization and Pathogenesis. Journal of Immunology, 2007, 179, 6144-6152.	0.4	66
165	Molecular genetic analysis of glucocorticoid signaling during mouse development. Steroids, 1995, 60, 93-96.	0.8	65
166	Scaling behaviour and rate-determining steps in filamentous self-assembly. Chemical Science, 2017, 8, 7087-7097.	3.7	65
167	Structural Basis of Prion Inhibition by Phenothiazine Compounds. Structure, 2014, 22, 291-303.	1.6	63
168	Toward Therapy of Human Prion Diseases. Annual Review of Pharmacology and Toxicology, 2018, 58, 331-351.	4.2	63
169	Human prion diseases: epidemiology and integrated risk assessment. Lancet Neurology, The, 2003, 2, 757-763.	4.9	62
170	Circumventing Tolerance to the Prion Protein (PrP): Vaccination with PrP-Displaying Retrovirus Particles Induces Humoral Immune Responses against the Native Form of Cellular PrP. Journal of Virology, 2005, 79, 4033-4042.	1.5	62
171	Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13626-13631.	3.3	62
172	Aerosols Transmit Prions to Immunocompetent and Immunodeficient Mice. PLoS Pathogens, 2011, 7, e1001257.	2.1	62
173	Unhampered Prion Neuroinvasion despite Impaired Fast Axonal Transport in Transgenic Mice Overexpressing Four-Repeat Tau. Journal of Neuroscience, 2002, 22, 7471-7477.	1.7	61
174	Experimental Verification of a Traceback Phenomenon in Prion Infection. Journal of Virology, 2010, 84, 3230-3238.	1.5	61
175	Dangerous Liaisons between a Microbe and the Prion Protein. Journal of Experimental Medicine, 2003, 198, 1-4.	4.2	59
176	Transgenic and Knockâ€out Mice: Models of Neurological Disease. Brain Pathology, 1994, 4, 3-20.	2.1	59
177	Polythiophenes Inhibit Prion Propagation by Stabilizing Prion Protein (PrP) Aggregates. Journal of Biological Chemistry, 2012, 287, 18872-18887.	1.6	58
178	Bovine spongiform encephalopathy and early onset variant Creutzfeldt—Jakob disease. Current Opinion in Neurobiology, 1997, 7, 695-700.	2.0	57
179	Normal neurogenesis and scrapie pathogenesis in neural grafts lacking the prion protein homologue Doppel. EMBO Reports, 2001, 2, 347-352.	2.0	57
180	The Role of the NADPH Oxidase NOX2 in Prion Pathogenesis. PLoS Pathogens, 2014, 10, e1004531.	2.1	57

#	Article	IF	CITATIONS
181	Early Induction of Angiogenetic Signals in Gliomas of GFAP-v-src Transgenic Mice. American Journal of Pathology, 1999, 154, 581-590.	1.9	56
182	Unchanged Survival Rates of $14\text{-}3\text{-}3\hat{1}^3$ Knockout Mice after Inoculation with Pathological Prion Protein. Molecular and Cellular Biology, 2005, 25, 1339-1346.	1.1	56
183	Spongiform Encephalopathy in Transgenic Mice Expressing a Point Mutation in the β2–α2 Loop of the Prion Protein. Journal of Neuroscience, 2011, 31, 13840-13847.	1.7	56
184	Prions and the lymphoreticular system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 177-184.	1.8	55
185	Lymphotoxin-β Receptor-Dependent Genes in Lymph Node and Follicular Dendritic Cell Transcriptomes. Journal of Immunology, 2005, 174, 5526-5536.	0.4	55
186	Resuscitative Hypothermia Protects the Neonatal Rat Brain from Hypoxicâ€Ischemic Injury. Brain Pathology, 2000, 10, 61-71.	2.1	54
187	Sheep with Scrapie and Mastitis Transmit Infectious Prions through the Milk. Journal of Virology, 2011, 85, 1136-1139.	1.5	54
188	Progress and problems in the biology, diagnostics, and therapeutics of prion diseases. Journal of Clinical Investigation, 2004, 114, 153-160.	3.9	54
189	Differential Toxicity of Antibodies to the Prion Protein. PLoS Pathogens, 2016, 12, e1005401.	2.1	54
190	NG2 glia are required for maintaining microglia homeostatic state. Glia, 2020, 68, 345-355.	2.5	52
191	Immune system and peripheral nerves in propagation of prions to CNS. British Medical Bulletin, 2003, 66, 141-159.	2.7	51
192	Lymphotoxin-Dependent Prion Replication in Inflammatory Stromal Cells of Granulomas. Immunity, 2008, 29, 998-1008.	6.6	51
193	GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. Journal of Experimental Medicine, 2018, 215, 941-961.	4.2	51
194	Association between Deposition of Beta-Amyloid and Pathological Prion Protein in Sporadic Creutzfeldt-Jakob Disease. Neurodegenerative Diseases, 2008, 5, 347-354.	0.8	50
195	Ossified blood vessels in primary familial brain calcification elicit a neurotoxic astrocyte response. Brain, 2019, 142, 885-902.	3.7	50
196	Tyrosinase is a new marker for cell populations in the mouse neural tube., 1996, 205, 445-456.		49
197	Between cows and monkeys. Nature, 1996, 381, 734-735.	13.7	48
198	Human Foamy Virus Antigens in Thyroid Tissue of Graves' Disease Patients. International Archives of Allergy and Immunology, 1992, 99, 153-156.	0.9	47

#	Article	IF	CITATIONS
199	Creutzfeldt-Jakob disease and inclusion body myositis: Abundant disease-associated prion protein in muscle. Annals of Neurology, 2004, 55, 121-125.	2.8	47
200	Evaluation of NADPH oxidases as drug targets in a mouse model of familial amyotrophic lateral sclerosis. Free Radical Biology and Medicine, 2016, 97, 95-108.	1.3	47
201	Soluble Conformers of $\hat{A^2}$ and Tau Alter Selective Proteins Governing Axonal Transport. Journal of Neuroscience, 2016, 36, 9647-9658.	1.7	47
202	An R-CaMP1.07 reporter mouse for cell-type-specific expression of a sensitive red fluorescent calcium indicator. PLoS ONE, 2017, 12, e0179460.	1.1	47
203	Endothelial cell transformation by polyomavirus middle T antigen in mice lacking Src-related kinases. Current Biology, 1994, 4, 100-109.	1.8	46
204	Magnetic Resonance Imaging of Brain Edema in the Neonatal Rat: A Comparison of Short and Long Term Hypoxia-ischemia. Pediatric Research, 1995, 38, 113-118.	1.1	46
205	Intrinsic Resistance of Oligodendrocytes to Prion Infection. Journal of Neuroscience, 2004, 24, 5974-5981.	1.7	46
206	Understanding the diversity of prions. Nature Cell Biology, 2004, 6, 290-292.	4.6	46
207	Canine MDCK cell lines are refractory to infection with human and mouse prions. Vaccine, 2008, 26, 2601-2614.	1.7	46
208	Unexpected Tolerance of \hat{l} ±-Cleavage of the Prion Protein to Sequence Variations. PLoS ONE, 2010, 5, e9107.	1.1	45
209	Lymphotoxin \hat{I}^2 Receptor Signaling Promotes Development of Autoimmune Pancreatitis. Gastroenterology, 2012, 143, 1361-1374.	0.6	45
210	Lymphocyte activation gene 3 (Lag3) expression is increased in prion infections but does not modify disease progression. Scientific Reports, 2018, 8, 14600.	1.6	45
211	Identification of pol-Related Gene Products of Human Foamy Virus. Virology, 1993, 192, 336-338.	1.1	44
212	Post-exposure prophylaxis after accidental prion inoculation. Lancet, The, 1997, 350, 1519-1520.	6.3	44
213	LAG3 is not expressed in human and murine neurons and does not modulate αâ€synucleinopathies. EMBO Molecular Medicine, 2021, 13, e14745.	3.3	44
214	Gene Transfer Using Replication-Defective Human Foamy Virus Vectors. Virology, 1997, 235, 65-72.	1.1	42
215	Proper axonal distribution of PrPC depends on cholesterol–sphingomyelin-enriched membrane domains and is developmentally regulated in hippocampal neurons. Molecular and Cellular Neurosciences, 2005, 30, 304-315.	1.0	42
216	Inhibition of group-I metabotropic glutamate receptors protects against prion toxicity. PLoS Pathogens, 2017, 13, e1006733.	2.1	42

#	Article	IF	CITATIONS
217	Identification of novel risk loci and causal insights for sporadic Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurology, The, 2020, 19, 840-848.	4.9	42
218	Cerebrovascular P-glycoprotein expression is decreased in Creutzfeldt–Jakob disease. Acta Neuropathologica, 2006, 111, 436-443.	3.9	40
219	Singleâ€Molecule Imaging Reveals that Small Amyloidâ€Î² _{1–42} Oligomers Interact with the Cellular Prion Protein (PrP ^C). ChemBioChem, 2014, 15, 2515-2521.	1.3	40
220	Genome-wide transcriptomics identifies an early preclinical signature of prion infection. PLoS Pathogens, 2020, 16, e1008653.	2.1	40
221	Disruption of Doppel prevents neurodegeneration in mice with extensive Prnp deletions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4198-4203.	3.3	39
222	Expression of lymphotoxin beta governs immunity at two distinct levels. European Journal of Immunology, 2006, 36, 2061-2075.	1.6	39
223	Multiscale optical and optoacoustic imaging of amyloid- \hat{l}^2 deposits in mice. Nature Biomedical Engineering, 2022, 6, 1031-1044.	11.6	39
224	Transgenic and Knockout Mice in Research on Prion Diseases. Brain Pathology, 1998, 8, 715-733.	2.1	38
225	Prions, Cytokines, and Chemokines: A Meeting in Lymphoid Organs. Immunity, 2005, 22, 145-154.	6.6	38
226	Identification of the End Stage of Scrapie Using Infected Neural Grafts. Brain Pathology, 1998, 8, 19-27.	2.1	38
227	Differentiation and Histological Analysis of Embryonic Stem Cellâ€Derived Neural Transplants in Mice. Brain Pathology, 2000, 10, 330-341.	2.1	37
228	Characterizing follicular dendritic cells: A progress report. European Journal of Immunology, 2010, 40, 2134-2138.	1.6	37
229	Homozygous calreticulin mutations in patients with myelofibrosis lead to acquired myeloperoxidase deficiency. Blood, 2016, 127, 3253-3259.	0.6	37
230	Prion Pathogenesis in the Absence of NLRP3/ASC Inflammasomes. PLoS ONE, 2015, 10, e0117208.	1.1	37
231	vCJD tissue distribution and transmission by transfusionâ€"a worst-case scenario coming true?. Lancet, The, 2004, 363, 411-412.	6.3	36
232	Prion infections, blood and transfusions. Nature Clinical Practice Neurology, 2006, 2, 321-329.	2.7	36
233	Triggering receptor expressed on myeloid cells-2 is involved in prion-induced microglial activation but does not contribute to prion pathogenesis in mouse brains. Neurobiology of Aging, 2015, 36, 1994-2003.	1.5	36
234	Peripheral pathogenesis of prion diseases. Microbes and Infection, 2000, 2, 613-619.	1.0	35

#	Article	IF	CITATIONS
235	Recent developments in prion immunotherapy. Current Opinion in Immunology, 2004, 16, 594-598.	2.4	35
236	A Pathogenic PrP Mutation and Doppel Interfere with Polarized Sorting of the Prion Protein. Journal of Biological Chemistry, 2005, 280, 5137-5140.	1.6	35
237	Bacterial Colitis Increases Susceptibility to Oral Prion Disease. Journal of Infectious Diseases, 2009, 199, 243-252.	1.9	35
238	CELL BIOLOGY: Prion Toxicity: All Sail and No Anchor. Science, 2005, 308, 1420-1421.	6.0	34
239	Prions and peripheral nerves: A deadly rendezvous. Journal of Neuroscience Research, 2007, 85, 2714-2725.	1.3	34
240	Itch suppression in mice and dogs by modulation of spinal $\hat{l}\pm 2$ and $\hat{l}\pm 3$ GABAA receptors. Nature Communications, 2018, 9, 3230.	5.8	34
241	Evaluation of OPEN Zinc Finger Nucleases for Direct Gene Targeting of the ROSA26 Locus in Mouse Embryos. PLoS ONE, 2012, 7, e41796.	1.1	34
242	Hydrogen/deuterium exchange mass spectrometry identifies two highly protected regions in recombinant fullâ€length prion protein amyloid fibrils. Journal of Mass Spectrometry, 2009, 44, 965-977.	0.7	33
243	Bclâ€2 overexpression delays caspaseâ€3 activation and rescues cerebellar degeneration in prionâ€deficient mice that overexpress aminoâ€terminally truncated prion. FASEB Journal, 2007, 21, 3107-3117.	0.2	32
244	Alzheimer's disease under strain. Nature, 2014, 512, 32-34.	13.7	32
245	The uptake of tau amyloid fibrils is facilitated by the cellular prion protein and hampers prion propagation in cultured cells. Journal of Neurochemistry, 2020, 155, 577-591.	2.1	32
246	Antibody Affinity Governs the Inhibition of SARS-CoV-2 Spike/ACE2 Binding in Patient Serum. ACS Infectious Diseases, 2021, 7, 2362-2369.	1.8	32
247	Targeting the mTOR Complex by Everolimus in NRAS Mutant Neuroblastoma. PLoS ONE, 2016, 11, e0147682.	1.1	32
248	Alzheimerâ \in [™] s Aβ vaccination of rhesus monkeys (Macaca mulatta). Mechanisms of Ageing and Development, 2004, 125, 149-151.	2.2	31
249	Five Questions on Prion Diseases. PLoS Pathogens, 2012, 8, e1002651.	2.1	31
250	Binding of Polythiophenes to Amyloids: Structural Mapping of the Pharmacophore. ACS Chemical Neuroscience, 2018, 9, 475-481.	1.7	31
251	The foamy virus family: molecular biology, epidemiology and neuropathology. Biochimica Et Biophysica Acta: Reviews on Cancer, 1993, 1155, 1-24.	3.3	30
252	Stimulation of plasminogen activation by recombinant cellular prion protein is conserved in the NH2-terminal fragment PrP23-110. Thrombosis and Haemostasis, 2003, 89, 812-819.	1.8	30

#	Article	IF	CITATIONS
253	Chemical and biophysical insights into the propagation of prion strains. HFSP Journal, 2008, 2, 332-341.	2.5	30
254	A case-control study of sporadic Creutzfeldt-Jakob disease in Switzerland: analysis of potential risk factors with regard to an increased CJD incidence in the years 2001–2004. BMC Public Health, 2009, 9, 18.	1.2	30
255	Genetic Depletion of Complement Receptors CD21/35 Prevents Terminal Prion Disease in a Mouse Model of Chronic Wasting Disease. Journal of Immunology, 2012, 189, 4520-4527.	0.4	30
256	Transition of the prion protein from a structured cellular form (PrP ^C) to the infectious scrapie agent (PrP ^{Sc}). Protein Science, 2019, 28, 2055-2063.	3.1	30
257	A cullin-RING ubiquitin ligase targets exogenous α-synuclein and inhibits Lewy body–like pathology. Science Translational Medicine, 2019, 11, .	5.8	30
258	Anti-prothrombin autoantibodies enriched after infection with SARS-CoV-2 and influenced by strength of antibody response against SARS-CoV-2 proteins. PLoS Pathogens, 2021, 17, e1010118.	2.1	30
259	Efficient Inhibition of Prion Replication by PrP-Fc2 Suggests that the Prion is a PrPSc Oligomer. Journal of Molecular Biology, 2005, 345, 1243-1251.	2.0	29
260	Urinary α1-Antichymotrypsin: A Biomarker of Prion Infection. PLoS ONE, 2008, 3, e3870.	1.1	29
261	Ribosomal profiling during prion disease uncovers progressive translational derangement in glia but not in neurons. ELife, 2020, 9, .	2.8	29
262	PrP(106-126) activates neuronal intracellular kinases and Egr1 synthesis through activation of NADPH-oxidase independently of PrPc. FEBS Letters, 2005, 579, 4099-4106.	1.3	28
263	Dominant and Recessive Molecular Changes in Neuroblastomas. Brain Pathology, 1992, 2, 195-208.	2.1	26
264	Structural studies on the folded domain of the human prion protein bound to the Fab fragment of the antibody POM1. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1501-1512.	2.5	26
265	Toxic Protein Spread in Neurodegeneration: Reality versus Fantasy. Trends in Molecular Medicine, 2018, 24, 1007-1020.	3.5	26
266	The shifting biology of prions. Brain Research Reviews, 2001, 36, 241-248.	9.1	25
267	Sporadic Creutzfeldt?Jakob disease. Journal of Neurology, 2005, 252, 338-342.	1.8	25
268	A role for astroglia in prion diseases. Journal of Experimental Medicine, 2017, 214, 3477-3479.	4.2	25
269	Age-Related Gliosis Promotes Central Nervous System Lymphoma through CCL19-Mediated Tumor Cell Retention. Cancer Cell, 2019, 36, 250-267.e9.	7.7	25
270	Functionally Relevant Domains of the Prion Protein Identified In Vivo. PLoS ONE, 2009, 4, e6707.	1.1	25

#	Article	IF	CITATIONS
271	Neurotoxic Antibodies against the Prion Protein Do Not Trigger Prion Replication. PLoS ONE, 2016, 11, e0163601.	1.1	25
272	The prion's perplexing persistence. Nature, 1998, 392, 763-764.	13.7	24
273	Alzheimer A \hat{I}^2 Vaccination of Rhesus Monkeys (Macaca Mulatta). Alzheimer Disease and Associated Disorders, 2004, 18, 44-46.	0.6	24
274	Cells and prions: A license to replicate. FEBS Letters, 2009, 583, 2674-2684.	1.3	24
275	SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. Journal of Experimental Medicine, 2019, 216, 743-756.	4.2	24
276	Microfluidic characterisation reveals broad range of SARS-CoV-2 antibody affinity in human plasma. Life Science Alliance, 2022, 5, e202101270.	1.3	24
277	Transgenic and gene disruption techniques in the study of neurocarcinogenesis. Glia, 1995, 15, 348-364.	2.5	23
278	Efficient Generation of Multipotent Mesenchymal Stem Cells from Umbilical Cord Blood in Stroma-Free Liquid Culture. PLoS ONE, 2010, 5, e15689.	1.1	23
279	The Proto-oncogene c-fos Mediates Apoptosis in Murine T-Lymphocytes Induced by Ionizing Radiation and Dexamethasone. Biochemical and Biophysical Research Communications, 1997, 241, 519-524.	1.0	22
280	Transcriptional Stability of Cultured Cells upon Prion Infection. Journal of Molecular Biology, 2008, 375, 1222-1233.	2.0	22
281	Overexpression of Lymphotoxin in T Cells Induces Fulminant Thymic Involution. American Journal of Pathology, 2008, 172, 1555-1570.	1.9	22
282	Genomeâ€wide identification of microRNAs regulating the human prion protein. Brain Pathology, 2019, 29, 232-244.	2.1	22
283	Scaling analysis reveals the mechanism and rates of prion replication in vivo. Nature Structural and Molecular Biology, 2021, 28, 365-372.	3.6	22
284	Repetitive Immunization Enhances the Susceptibility of Mice to Peripherally Administered Prions. PLoS ONE, 2009, 4, e7160.	1.1	22
285	EBV renders B cells susceptible to HIV-1 in humanized mice. Life Science Alliance, 2020, 3, e202000640.	1.3	22
286	Absolute Quantification of Amyloid Propagons by Digital Microfluidics. Analytical Chemistry, 2017, 89, 12306-12313.	3.2	21
287	A bispecific immunotweezer prevents soluble PrP oligomers and abolishes prion toxicity. PLoS Pathogens, 2018, 14, e1007335.	2.1	21
288	Isolation of infectious, non-fibrillar and oligomeric prions from a genetic prion disease. Brain, 2020, 143, 1512-1524.	3.7	21

#	Article	IF	CITATIONS
289	Shifts and drifts in prion science. Science, 2020, 370, 32-34.	6.0	21
290	Atypical Prion Protein Conformation in Familial Prion Disease with <i>PRNP</i> P105T Mutation. Brain Pathology, 2011, 21, 209-214.	2.1	20
291	PrP charge structure encodes interdomain interactions. Scientific Reports, 2015, 5, 13623.	1.6	20
292	Magnetic fields modulate metabolism and gut microbiome in correlation with ⟨i⟩Pgcâ€1α⟨/i⟩ expression: Followâ€up to an in vitro magnetic mitohormetic study. FASEB Journal, 2020, 34, 11143-11167.	0.2	20
293	Peripheral prion pursuit. Journal of Clinical Investigation, 2001, 108, 661-662.	3.9	20
294	Cystatin F is a biomarker of prion pathogenesis in mice. PLoS ONE, 2017, 12, e0171923.	1.1	20
295	Genetic and environmental factors in the etiology of human brain tumors. Toxicology Letters, 1995, 82-83, 601-605.	0.4	19
296	Preclinical Deposition of Pathological Prion Protein in Muscle of Experimentally Infected Primates. PLoS ONE, 2010, 5, e13906.	1.1	19
297	Multiple Substitutions of Methionine 129 in Human Prion Protein Reveal Its Importance in the Amyloid Fibrillation Pathway. Journal of Biological Chemistry, 2012, 287, 25975-25984.	1.6	19
298	X-ray structural and molecular dynamical studies of the globular domains of cow, deer, elk and Syrian hamster prion proteins. Journal of Structural Biology, 2015, 192, 37-47.	1.3	19
299	Modifiers of prion protein biogenesis and recycling identified by a highly parallel endocytosis kinetics assay. Journal of Biological Chemistry, 2017, 292, 8356-8368.	1.6	19
300	Mechanism of misfolding of the human prion protein revealed by a pathological mutation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
301	Immunotherapy for neurodegeneration?. Science, 2019, 364, 130-131.	6.0	19
302	The AMOG/ \hat{l}^22 subunit of Na, K-ATPase is not necessary for long-term survival of telencephalic grafts. Glia, 1995, 15, 377-388.	2.5	18
303	Neurodegeneration: Of (transgenic) Mice and Men. Brain Pathology, 1998, 8, 695-697.	2.1	18
304	Protein conformation dictates prion strain. Nature Medicine, 1998, 4, 1125-1126.	15.2	18
305	Neuroinvasion of Prions: Insights from Mouse Models. Experimental Physiology, 2000, 85, 705-712.	0.9	18
306	Recent advances in prion biology. Current Opinion in Neurology, 2004, 17, 337-342.	1.8	18

#	Article	IF	Citations
307	Loss of PIKfyve drives the spongiform degeneration in prion diseases. EMBO Molecular Medicine, 2021, 13, e14714.	3.3	18
308	Ligands binding to the prion protein induce its proteolytic release with therapeutic potential in neurodegenerative proteinopathies. Science Advances, 2021, 7, eabj1826.	4.7	18
309	Lack of association between pandemic chilblains and SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
310	Pathogenesis of prion diseases: possible implications of microglial cells. Progress in Brain Research, 2001, 132, 737-750.	0.9	17
311	Clinical and radiological mimicry of vCJD in a valine homozygous PrP Sc type $1\ \text{sCJD}$ patient. Journal of Neurology, 2003, 250, 491-493.	1.8	17
312	Enteroglial and neuronal involvement without apparent neuron loss in ileal enteric nervous system plexuses from scrapie-affected sheep. Journal of General Virology, 2007, 88, 2899-2904.	1.3	17
313	Germinal center B cells are dispensable in prion transport and neuroinvasion. Journal of Neuroimmunology, 2007, 192, 113-123.	1.1	17
314	Neurodegeneration and Unfolded-Protein Response in Mice Expressing a Membrane-Tethered Flexible Tail of PrP. PLoS ONE, 2015, 10, e0117412.	1.1	17
315	Developmental divergence of sensory stimulus representation in cortical interneurons. Nature Communications, 2020, $11,5729$.	5.8	17
316	Protective antiâ€prion antibodies in human immunoglobulin repertoires. EMBO Molecular Medicine, 2020, 12, e12739.	3.3	17
317	A third polypeptide associated with heavy and light chain subunits of class I HLA antigens in immune interferon-treated human melanoma cells. European Journal of Immunology, 1985, 15, 946-951.	1.6	16
318	Variant Creutzfeldt–Jakob disease: between lymphoid organs and brain. Trends in Microbiology, 2004, 12, 51-53.	3 . 5	16
319	Antiprion Prophylaxis by Gene Transfer of a Soluble Prion Antagonist. American Journal of Pathology, 2008, 172, 1287-1296.	1.9	16
320	No Complementation Between TP53 or RBâ€1 and vâ€ <i>src</i> in Astrocytomas of GFAPâ€vâ€ <i>src</i> Transgenic Mice. Brain Pathology, 1999, 9, 627-637.	2.1	15
321	Spongiform encephalopathies: Insights from transgenic models. Advances in Virus Research, 2001, 56, 313-352.	0.9	15
322	Prions: Pathogenesis and Reverse Genetics. Annals of the New York Academy of Sciences, 2000, 920, 140-157.	1.8	15
323	The Peripheral Nervous System and the Pathogenesis of Prion Diseases. Current Molecular Medicine, 2004, 4, 355-359.	0.6	15
324	Analysis of the Determinants of Neurotropism and Neurotoxicity of HFV in Transgenic Mice. Virology, 1996, 216, 338-346.	1.1	14

#	Article	IF	CITATIONS
325	Deletions in the spinal muscular atrophy gene region in a newborn with neuropathy and extreme generalized muscular weakness. European Journal of Paediatric Neurology, 2000, 4, 35-38.	0.7	14
326	Immunity against prions?. Trends in Molecular Medicine, 2001, 7, 477-479.	3.5	14
327	A Template for New Drugs against Alzheimer's Disease. Cell, 2013, 154, 1182-1184.	13.5	14
328	Unaltered Prion Pathogenesis in a Mouse Model of High-Fat Diet-Induced Insulin Resistance. PLoS ONE, 2015, 10, e0144983.	1.1	14
329	Angiogenesis in transgenic models of multistep carcinogenesis. Journal of Neuro-Oncology, 2000, 50, 89-98.	1.4	13
330	Fibrillar prion peptide PrP(106–126) treatment induces Dab1 phosphorylation and impairs APP processing and Âβ production in cortical neurons. Neurobiology of Disease, 2008, 30, 243-254.	2.1	13
331	Prion Topology and Toxicity. Cell, 2009, 137, 994-996.	13.5	13
332	Lymphotoxin, but Not TNF, Is Required for Prion Invasion of Lymph Nodes. PLoS Pathogens, 2012, 8, e1002867.	2.1	13
333	The Priority position paper: Protecting Europe's food chain from prions. Prion, 2016, 10, 165-181.	0.9	13
334	Latest advances in aging research and drug discovery. Aging, 2019, 11, 9971-9981.	1.4	13
335	Glial activation in prion diseases is selectively triggered by neuronal PrP ^{Sc} . Brain Pathology, 2022, 32, e13056.	2.1	13
336	Both COVID-19 infection and vaccination induce high-affinity cross-clade responses to SARS-CoV-2 variants. IScience, 2022, 25, 104766.	1.9	13
337	Reduced latency but no increased brain tumor penetrance in mice with astrocyte specific expression of a human p53 mutant. Oncogene, 2000, 19, 5329-5337.	2.6	12
338	Overexpression of Pax5 is not sufficient for neoplastic transformation of mouse neuroectoderm. International Journal of Cancer, 2001, 93, 459-467.	2.3	12
339	Alteration of B-Cell Subsets Enhances Neuroinvasion in Mouse Scrapie Infection. Journal of Virology, 2008, 82, 3791-3795.	1.5	12
340	Mimicry of Variant Creutzfeldt-Jakob Disease by Sporadic Creutzfeldt-Jakob Disease: Importance of the Pulvinar Sign. Archives of Neurology, 2004, 61, 445.	4.9	11
341	Prion biology: the quest for the test. Nature Methods, 2007, 4, 614-616.	9.0	11
342	Phenotypic Variation of Autosomal-Dominant Corticobasal Degeneration. European Neurology, 2012, 67, 142-150.	0.6	11

#	Article	IF	CITATIONS
343	Relative Impact of Complement Receptors CD21/35 (Cr2/1) on Scrapie Pathogenesis in Mice. MSphere, 2017, 2, .	1.3	11
344	The ultrastructure of infectious L-type bovine spongiform encephalopathy prions constrains molecular models. PLoS Pathogens, 2021, 17, e1009628.	2.1	11
345	Differential Susceptibility to Modulation by Recombinant Immune Interferon of HLA-DR and -DQ Antigens Synthesized by Melanoma COLO 38 Cells. Hybridoma, 1986, 5, 277-288.	0.9	10
346	Studies on Prion Replication in Spleen. Autoimmunity, 2001, 8, 291-304.	0.6	10
347	Blood simple prion diagnostics. Nature Medicine, 2001, 7, 289-290.	15.2	10
348	Analysis of the Prion Protein in Primates Reveals a New Polymorphism in Codon 226 (Y226F). Biological Chemistry, 2002, 383, 1021-5.	1.2	10
349	Current Concepts and Controversies in Prion Immunopathology. Journal of Molecular Neuroscience, 2004, 23, 003-012.	1.1	10
350	Staining, straining and restraining prions. Nature Neuroscience, 2008, 11, 1239-1240.	7.1	10
351	Novel dominant-negative prion protein mutants identified from a randomized library. Protein Engineering, Design and Selection, 2008, 21, 623-629.	1.0	10
352	Efficient Amyloid A Clearance in the Absence of Immunoglobulins and Complement Factors. American Journal of Pathology, 2013, 182, 1297-1307.	1.9	10
353	BSE-associated Prion-Amyloid Cardiomyopathy in Primates. Emerging Infectious Diseases, 2013, 19, 985-988.	2.0	10
354	Molecular foundations of prion strain diversity. Current Opinion in Neurobiology, 2022, 72, 22-31.	2.0	10
355	Recent developments in antibody therapeutics against prion disease. Emerging Topics in Life Sciences, 2020, 4, 169-173.	1.1	10
356	Total removal of a primary intracranial squamous cell carcinoma invading the brain stem. World Neurosurgery, 1996, 46, 477-480.	1.3	9
357	Pathogenesis of Spongiform Encephalopathies: An Update. International Archives of Allergy and Immunology, 1996, 110, 99-106.	0.9	9
358	Heightened incidence of sporadic Creutzfeldt-Jakob disease is associated with a shift in clinicopathological profiles. Journal of Neurology, 2008, 255, 1464-1472.	1.8	9
359	Prion protein on astrocytes or in extracellular fluid impedes neurodegeneration induced by truncated prion protein. Experimental Neurology, 2009, 217, 347-352.	2.0	9
360	Crystallization and preliminary X-ray diffraction analysis of prion protein bound to the Fab fragment of the POM1 antibody. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1211-1213.	0.7	9

#	Article	IF	CITATIONS
361	Prion pathogenesis is unaltered in a mouse strain with a permeable blood-brain barrier. PLoS Pathogens, 2018, 14, e1007424.	2.1	9
362	â€~Broken access' publishing corrodes quality. Nature, 2019, 570, 139-139.	13.7	9
363	Soluble dimeric prion protein ligand activates Adgrg6 receptor but does not rescue early signs of demyelination in PrP-deficient mice. PLoS ONE, 2020, 15, e0242137.	1.1	9
364	New and emerging roles of small RNAs in neurodegeneration, muscle, cardiovascular and inflammatory diseases. Swiss Medical Weekly, 2015, 145, w14192.	0.8	9
365	Association of Wilms $\hat{E}^{1}\!\!/_{4}$ Tumor with Primary Brain Tumor in Siblings. Journal of Neuropathology and Experimental Neurology, 1995, 54, 214-223.	0.9	8
366	Transgenic mice as research tools in neurocarcinogenesis. Journal of NeuroVirology, 1998, 4, 159-174.	1.0	8
367	The genetics of prionsâ€"a contradiction in terms?. Lancet, The, 1999, 354, S22-S25.	6.3	8
368	Aerosols. Prion, 2011, 5, 138-141.	0.9	8
369	The crystal structure of an octapeptide repeat of the Prion protein in complex with a Fab fragment of the POM2 antibody. Protein Science, 2013, 22, 893-903.	3.1	8
370	Prions and lymphoid organs: Solved and remaining mysteries. Prion, 2013, 7, 157-163.	0.9	8
371	Infectious prions do not induce $\hat{Al^2}$ deposition in an in vivo seeding model. Acta Neuropathologica, 2018, 135, 965-967.	3.9	8
372	An integrated genomic approach to dissect the genetic landscape regulating the cell-to-cell transfer of \hat{l}_{\pm} -synuclein. Cell Reports, 2021, 35, 109189.	2.9	8
373	Prion protein and prion disease at a glance. Journal of Cell Science, 2021, 134, .	1.2	8
374	Curing Rat Glioblastoma: Immunotherapy or Graft Rejection?. Science, 1997, 276, 17.6-21.	6.0	8
375	Microfluidic Antibody Affinity Profiling Reveals the Role of Memory Reactivation and Cross-Reactivity in the Defense Against SARS-CoV-2. ACS Infectious Diseases, 2022, 8, 790-799.	1.8	8
376	Autoantibodies against the prion protein in individuals with <i>PRNP</i> mutations. Neurology, 2020, 95, e2028-e2037.	1.5	7
377	Protease resistance of infectious prions is suppressed by removal of a single atom in the cellular prion protein. PLoS ONE, 2017, 12, e0170503.	1.1	7
378	Prion pathogenesis is unaltered in the absence of SIRPα-mediated "don't-eat-me" signaling. PLoS ONE, 2017, 12, e0177876.	1.1	7

#	Article	IF	Citations
379	Prion infection, transmission, and cytopathology modeled in a low-biohazard human cell line. Life Science Alliance, 2020, 3, e202000814.	1.3	7
380	Concordance of <scp>CSF RTâ€QulC</scp> across the European <scp>Creutzfeldtâ€Jakob</scp> Disease surveillance network. European Journal of Neurology, 2022, , .	1.7	7
381	Shrinking prions: new folds to old questions. Nature Medicine, 1999, 5, 486-487.	15.2	6
382	ZyFISH: A Simple, Rapid and Reliable Zygosity Assay for Transgenic Mice. PLoS ONE, 2012, 7, e37881.	1.1	6
383	In Vivo Longitudinal 1H MRS Study of Transgenic Mouse Models of Prion Disease in the Hippocampus and Cerebellum at 14.1ÂT. Neurochemical Research, 2015, 40, 2639-2646.	1.6	6
384	Structural characterization of POM 6 Fab and mouse prion protein complex identifies key regions for prions conformational conversion. FEBS Journal, 2018, 285, 1701-1714.	2.2	6
385	Prion protein deficiency impairs hematopoietic stem cell determination and sensitizes myeloid progenitors to irradiation. Haematologica, 2020, 105, 1216-1222.	1.7	6
386	Patient-blood management for COVID19 convalescent plasma therapy: relevance of affinity and donorâ€"recipient differences in concentration of neutralizing antibodies. Clinical Microbiology and Infection, 2021, 27, 987-992.	2.8	6
387	Grafting mouse brains: from neurocarcinogenesis to neurodegeneration. EMBO Journal, 1998, 17, 6107-6114.	3.5	5
388	No influence of amyloid- \hat{l}^2 -degrading neprilysin activity on prion pathogenesis. Journal of General Virology, 2005, 86, 1861-1867.	1.3	5
389	Altered Monoaminergic Systems and Depressive-like Behavior in Congenic Prion Protein Knock-out Mice. Journal of Biological Chemistry, 2015, 290, 26350.	1.6	5
390	Extended characterization of the novel co-isogenic C57BL/6J Prnpâ^'/â^' mouse line. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 36-37.	1.4	5
391	Intrinsic Toxicity of Antibodies to the Globular Domain of the Prion Protein. Biological Psychiatry, 2018, 84, e51-e52.	0.7	5
392	Unaltered prion disease in mice lacking developmental endothelial locus–1. Neurobiology of Aging, 2019, 76, 208-213.	1.5	5
393	The prion protein is not required for peripheral nerve de- and remyelination after crush injury. PLoS ONE, 2021, 16, e0245944.	1.1	5
394	Randomized Tree Ensembles for Object Detection in Computational Pathology. Lecture Notes in Computer Science, 2009, , 367-378.	1.0	5
395	Insertional mutagenesis of preneoplastic astrocytes by Moloney murine leukemia virus. Journal of NeuroVirology, 2001, 7, 169-181.	1.0	4
396	Movement disorders reveal Creutzfeldt–Jakob disease. Nature Reviews Neurology, 2009, 5, 185-186.	4.9	4

#	Article	IF	CITATIONS
397	latrogenic and sporadic Creutzfeldt-Jakob disease in 2 sisters without mutation in the prion protein gene. Prion, 2015, 9, 444-448.	0.9	4
398	Regulated expression of amyloidogenic immunoglobulin light chains in mice. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 52-53.	1.4	4
399	The role of macrophage scavenger receptor $1\ (Msr1)$ in prion pathogenesis. Journal of Molecular Medicine, $2021,99,877-887$.	1.7	4
400	Scientific publishing in the times of open access. Swiss Medical Weekly, 2015, 145, w14118.	0.8	4
401	Novel regulators of PrPC biosynthesis revealed by genome-wide RNA interference. PLoS Pathogens, 2021, 17, e1010013.	2.1	4
402	Prionsâ€"Role of the Peripheral Nervous System. Virus Research, 2001, 82, 53.	1.1	3
403	Reconstructing Prions: Fibril Assembly from Simple Yeast to Complex Mammals. Neurodegenerative Diseases, 2005, 2, 1-5.	0.8	3
404	The Neuroimmune Interface in Prion Diseases. Physiology, 2000, 15, 250-255.	1.6	2
405	Neuroinvasion of prions: insights from mouse models. Experimental Physiology, 2000, 85, 705-712.	0.9	2
406	Letters to the Editor. Veterinary Pathology, 2005, 42, 107-107.	0.8	2
407	Enhanced detection of prion infectivity from blood by preanalytical enrichment with peptoid-conjugated beads. PLoS ONE, 2019, 14, e0216013.	1.1	2
408	â€~Forward genetics' and the causes of ALS. Nature Reviews Molecular Cell Biology, 2019, 20, 67-67.	16.1	2
409	New paradigms of clinical trial design for genetic prion diseases. Lancet Neurology, The, 2020, 19, 284-285.	4.9	2
410	Tau Exon 10 Inclusion by PrPC through Downregulating GSK3Î ² Activity. International Journal of Molecular Sciences, 2021, 22, 5370.	1.8	2
411	Efficient Generation of Multi-gene Knockout Cell Lines and Patient-derived Xenografts Using Multi-colored Lenti-CRISPR-Cas9. Bio-protocol, 2017, 7, e2222.	0.2	2
412	Strong, generous support for medical research emerges from a large cohort of Swiss patients. Swiss Medical Weekly, 2017, 147, w14537.	0.8	2
413	Transmissible Spongiform Encephalopathies. , 0, , 1859-1866.		2
414	Prions and the immune system: A trip through intestine, spleen, lymph nodes and nerves. Rendiconti Lincei, 2003, 14, 293-337.	1.0	1

#	Article	IF	Citations
415	Prion depletion and preservation of biological activity by preparative chaotrope ultracentrifugation. Biologicals, 2008, 36, 403-411.	0.5	1
416	A Lymphotoxin-Driven Pathway to Hepatocellular Carcinoma. Cancer Cell, 2009, 16, 447.	7.7	1
417	Corrigendum to "Transcriptional Stability of Cultured Cells upon Prion Infection―[J. Mol. Biol. 375 (2008) 1222–1233]. Journal of Molecular Biology, 2009, 388, 207.	2.0	1
418	Observation of Collagen-Containing Lesions After Hematoma Resolution in Intracerebral Hemorrhage. Stroke, 2021, 52, 1856-1860.	1.0	1
419	Equal contribution means that the contribution is equal. , 2021, 151, .		1
420	A neuroprotective role for microglia in prion diseases. Journal of Cell Biology, 2016, 213, 2134OIA109.	2.3	1
421	Authoring scientific papers: a perspective from the trenches. Swiss Medical Weekly, 2015, 145, w14107.	0.8	1
422	Brain aging is faithfully modelled in organotypic brain slices and accelerated by prions. Communications Biology, 2022, 5, .	2.0	1
423	Neurotoxicity of human foamy virus in transgenic mice. Journal of Cancer Research and Clinical Oncology, 1995, 121, S9-S9.	1.2	О
424	Utilisation de souris g \tilde{A} ©n \tilde{A} ©tiquement modifi \tilde{A} ©es dans les recherches sur les prions *. Annales De L'Institut Pasteur / Actualit \tilde{A} ©s, 1997, 8, 295-304.	0.1	0
425	How to fight brain cell suicide, and feel good at it. Cell Death and Differentiation, 1998, 5, 803-804.	5.0	О
426	The Immunobiology of Prion Diseases. Transfusion Alternatives in Transfusion Medicine, 2002, 4, 12-12.	0.2	0
427	Discussione Generale e Conclusione dei Lavori. Rendiconti Lincei, 2003, 14, 339-348.	1.0	0
428	The immune component of brain disease. Current Opinion in Immunology, 2004, 16, 584-586.	2.4	0
429	Host–microbe interactions: viruses. Current Opinion in Microbiology, 2004, 7, 397-399.	2.3	0
430	Prion diseases of mammals: epidemiology, genetics, and pathogenesis. Rendiconti Lincei, 2006, 17, 355-376.	1.0	0
431	Chapter 10 Prions. Blue Books of Neurology, 2007, 30, 239-264.	0.1	0
432	Chapter 7 A Neuropathologist's Diary. Comprehensive Chemical Kinetics, 2007, , 257-355.	2.3	0

#	Article	IF	CITATIONS
433	How the cows turned mad. Journal of Clinical Investigation, 2003, 112, 1127-1127.	3.9	O
434	Expansion of Umbilical Cord Blood Hematopoietic Stem Cells for Clinical Use Blood, 2007, 110, 4049-4049.	0.6	0
435	Engulfment of cerebral apoptotic bodies controls the course of prion disease in a mouse strain–dependent manner. Journal of Cell Biology, 2010, 190, i15-i15.	2.3	O
436	Scrapie Pathogenesis in Brain Grafts. , 1998, , 187-195.		0
437	Embryonic Liver Degeneration and Increased Sensitivity Towards Heavy Metal and H2O2 in Mice Lacking the Metal-Responsive Transcription Factor MTF-1., 1999,, 339-352.		O
438	Transgene und Knockout-MÃ \mathbf{g} se fÃ $\frac{1}{4}$ r das Studium von neurodegenerativen Erkrankungen. , 1999, , 122-145.		0
439	Strictly co-isogenic C57BL/6J-Prnpâ^'/â^'mice: A rigorous resource for prion science. Journal of Cell Biology, 2016, 212, 2126OIA42.	2.3	O
440	Genome-wide transcriptomics identifies an early preclinical signature of prion infection. , 2020, 16, e 1008653 .		0
441	Genome-wide transcriptomics identifies an early preclinical signature of prion infection. , 2020, 16 , e 1008653 .		0