Morihisa Fujita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2559373/publications.pdf

Version: 2024-02-01

236925 206112 2,500 61 25 48 citations h-index g-index papers 66 66 66 2854 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	C18orf32 loss-of-function is associated with a neurodevelopmental disorder with hypotonia and contractures. Human Genetics, 2022, , 1.	3.8	O
2	Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115083119.	7.1	10
3	Selecting cells expressing high levels of recombinant proteins using the GPI-anchored protein with selenocysteine system. Journal of Bioscience and Bioengineering, 2021, 131, 225-233.	2.2	O
4	Cell engineering for the production of hybrid-type N-glycans in HEK293 cells. Journal of Biochemistry, 2021, 170, 139-151.	1.7	7
5	Global mapping of glycosylation pathways in human-derived cells. Developmental Cell, 2021, 56, 1195-1209.e7.	7.0	46
6	Human SND2 mediates ER targeting of GPIâ€anchored proteins with low hydrophobic GPI attachment signals. FEBS Letters, 2021, 595, 1542-1558.	2.8	13
7	Sulfation of a FLAG tag mediated by SLC35B2 and TPST2 affects antibody recognition. PLoS ONE, 2021, 16, e0250805.	2.5	O
8	A knockout cell library of GPI biosynthetic genes for functional studies of GPI-anchored proteins. Communications Biology, 2021, 4, 777.	4.4	20
9	Novel Insight Into Glycosaminoglycan Biosynthesis Based on Gene Expression Profiles. Frontiers in Cell and Developmental Biology, 2021, 9, 709018.	3.7	15
10	Functional Analysis of the GPI Transamidase Complex by Screening for Amino Acid Mutations in Each Subunit. Molecules, 2021, 26, 5462.	3.8	5
11	Glycosylphosphatidylinositol Anchors and Lipids. , 2021, , 103-116.		O
12	Calnexin mediates the maturation of GPI-anchors through ER retention. Journal of Biological Chemistry, 2020, 295, 16393-16410.	3 . 4	18
13	Comprehensive Analysis of the Glycome and Glycoproteome of Bovine Milk-Derived Exosomes. Journal of Agricultural and Food Chemistry, 2020, 68, 12692-12701.	5. 2	29
14	Aberration of Serum and Tissue N-Glycans in Mouse \hat{I}^2 1,4-GalT1 Y286L Mutant Variants. Glycoconjugate Journal, 2020, 37, 767-775.	2.7	2
15	PGAP6, a GPI-specific phospholipase A2, has narrow substrate specificity against GPI-anchored proteins. Journal of Biological Chemistry, 2020, 295, 14501-14509.	3.4	12
16	MON2 Guides Wntless Transport to the Golgi through Recycling Endosomes. Cell Structure and Function, 2020, 45, 77-92.	1,1	13
17	Cross-talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis and ER-associated degradation. Nature Communications, 2020, 11, 860.	12.8	38
18	Mammalian GPI-anchor modifications and the enzymes involved. Biochemical Society Transactions, 2020, 48, 1129-1138.	3 . 4	33

#	Article	IF	CITATIONS
19	Glycoengineering of HEK293 cells to produce high-mannose-type N-glycan structures. Journal of Biochemistry, 2019, 166, 245-258.	1.7	18
20	Establishment of DHFR-deficient HEK293 cells for high yield of therapeutic glycoproteins. Journal of Bioscience and Bioengineering, 2019, 128, 487-494.	2.2	11
21	Yeast Dop1 is required for glycosyltransferase retrieval from the trans-Golgi network. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1147-1157.	2.4	4
22	Free, unlinked glycosylphosphatidylinositols on mammalian cell surfaces revisited. Journal of Biological Chemistry, 2019, 294, 5038-5049.	3.4	27
23	Structural Remodeling and Shedding of GPI-Anchors. Trends in Glycoscience and Glycotechnology, 2019, 31, SE71-SE73.	0.1	0
24	Structural Remodeling and Shedding of GPI-Anchors. Trends in Glycoscience and Glycotechnology, 2019, 31, SJ71-SJ73.	0.1	0
25	Genetic disruption of multiple α1,2-mannosidases generates mammalian cells producing recombinant proteins with high-mannose–type N-glycans. Journal of Biological Chemistry, 2018, 293, 5572-5584.	3.4	30
26	Identification of a Golgi GPI-N-acetylgalactosamine transferase with tandem transmembrane regions in the catalytic domain. Nature Communications, 2018, 9, 405.	12.8	37
27	Construction of green fluorescence protein mutant to monitor STT 3Bâ€dependent N â€glycosylation. FEBS Journal, 2018, 285, 915-928.	4.7	6
28	<i>N</i> -Glycan–dependent protein folding and endoplasmic reticulum retention regulate GPI-anchor processing. Journal of Cell Biology, 2018, 217, 585-599.	5.2	51
29	Alternative routes for synthesis of Nâ€linked glycans by Alg2 mannosyltransferase. FASEB Journal, 2018, 32, 2492-2506.	0.5	15
30	Structural and functional analysis of Alg1 beta-1,4 mannosyltransferase reveals the physiological importance of its membrane topology. Glycobiology, 2018, 28, 741-753.	2.5	10
31	PiggyBac-based screening identified BEM4 as a suppressor to rescue growth defects in och1-disrupted yeast cells. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1497-1507.	1.3	2
32	Crystallographic analysis of murine p $24\hat{l}^32$ Golgi dynamics domain. Proteins: Structure, Function and Bioinformatics, 2017, 85, 764-770.	2.6	10
33	Molecular switching system using glycosylphosphatidylinositol to select cells highly expressing recombinant proteins. Scientific Reports, 2017, 7, 4033.	3.3	11
34	Graphene oxide-chitosan nanocomposites for intracellular delivery of immunostimulatory CpG oligodeoxynucleotides. Materials Science and Engineering C, 2017, 73, 144-151.	7.3	63
35	Chitosan-Functionalized Graphene Oxide as a Potential Immunoadjuvant. Nanomaterials, 2017, 7, 59.	4.1	73
36	3D Structure and Interaction of p24 \hat{l}^2 and p24 \hat{l}' Golgi Dynamics Domains: Implication for p24 Complex Formation and Cargo Transport. Journal of Molecular Biology, 2016, 428, 4087-4099.	4.2	38

#	Article	IF	CITATIONS
37	A GPI processing phospholipase A2, PGAP6, modulates Nodal signaling in embryos by shedding CRIPTO. Journal of Cell Biology, 2016, 215, 705-718.	5.2	36
38	Thematic Review Series: Glycosylphosphatidylinositol (GPI) Anchors: Biochemistry and Cell Biology Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. Journal of Lipid Research, 2016, 57, 6-24.	4.2	207
39	Genome-Wide Screening of Genes Required for Glycosylphosphatidylinositol Biosynthesis. PLoS ONE, 2015, 10, e0138553.	2.5	19
40	Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport. Molecular Biology of the Cell, 2015, 26, 3071-3084.	2.1	88
41	Glycan-Mediated Protein Transport from the Endoplasmic Reticulum. , 2015, , 21-34.		0
42	The \hat{l} ±-Helical Region in p24 \hat{l} 32 Subunit of p24 Protein Cargo Receptor Is Pivotal for the Recognition and Transport of Glycosylphosphatidylinositol-anchored Proteins. Journal of Biological Chemistry, 2014, 289, 16835-16843.	3.4	29
43	Transport of glycosylphosphatidylinositol-anchored proteins from the endoplasmic reticulum. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2473-2478.	4.1	31
44	Glycosylphosphatidylinositol mannosyltransferase II is the rate-limiting enzyme in glycosylphosphatidylinositol biosynthesis under limited dolichol-phosphate mannose availability. Journal of Biochemistry, 2013, 154, 257-264.	1.7	11
45	Defective lipid remodeling of GPI anchors in peroxisomal disorders, Zellweger syndrome, and rhizomelic chondrodysplasia punctata. Journal of Lipid Research, 2012, 53, 653-663.	4.2	23
46	GPI-anchor remodeling: Potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1050-1058.	2.4	174
47	Potential Roles of GPI-Anchor Remodeling in Protein Trafficking and Raft Association in Mammalian Cells. Trends in Glycoscience and Glycotechnology, 2012, 24, 244-257.	0.1	1
48	Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. Journal of Cell Biology, 2011, 194, 61-75.	5.2	115
49	Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins. FEBS Letters, 2010, 584, 1670-1677.	2.8	95
50	Biogenesis of GPI-anchored proteins is essential for surface expression of sodium channels in zebrafish Rohon-Beard neurons to respond to mechanosensory stimulation. Development (Cambridge), 2010, 137, 1689-1698.	2.5	36
51	Biosynthesis of GPI-anchored proteins is essential for surface expression of sodium channels in zebrafish Rohon-Beard neurons to respond to mechanosensory stimulation. Neuroscience Research, 2010, 68, e75.	1.9	0
52	GPI-Anchor: Update for Biosynthesis and Remodeling. Trends in Glycoscience and Glycotechnology, 2010, 22, 182-193.	0.1	1
53	GPI Glycan Remodeling by PGAP5 Regulates Transport of GPI-Anchored Proteins from the ER to the Golgi. Cell, 2009, 139, 352-365.	28.9	137
54	Chapter 1 Overview of GPI Biosynthesis. The Enzymes, 2009, 26, 1-30.	1.7	2

#	Article	IF	CITATION:
55	Lipid remodeling of GPI-anchored proteins and its function. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 410-420.	2.4	105
56	Biosynthesis, Remodelling and Functions of Mammalian GPI-anchored Proteins: Recent Progress. Journal of Biochemistry, 2008, 144, 287-294.	1.7	245
57	O-Mannosylation is Required for Degradation of the Endoplasmic Reticulum-associated Degradation Substrate Gas1*p via the Ubiquitin/Proteasome Pathway in Saccharomyces cerevisiae. Journal of Biochemistry, 2007, 143, 555-567.	1.7	47
58	<i>Saccharomyces cerevisiae CWH43</i> Is Involved in the Remodeling of the Lipid Moiety of GPI Anchors to Ceramides. Molecular Biology of the Cell, 2007, 18, 4304-4316.	2.1	65
59	Fatty Acid Remodeling of GPI-anchored Proteins Is Required for Their Raft Association. Molecular Biology of the Cell, 2007, 18, 1497-1506.	2.1	177
60	Inositol Deacylation by Bst1p Is Required for the Quality Control of Glycosylphosphatidylinositol-anchored Proteins. Molecular Biology of the Cell, 2006, 17, 834-850.	2.1	86
61	PER1 Is Required for GPI-Phospholipase A2 Activity and Involved in Lipid Remodeling of GPI-anchored Proteins. Molecular Biology of the Cell, 2006, 17, 5253-5264.	2.1	103