Karen M Downs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/255821/publications.pdf

Version: 2024-02-01

430874 330143 1,476 37 18 37 h-index citations g-index papers 39 39 39 1800 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	The mouse fetalâ€placental arterial connection: A paradigm involving the primitive streak and visceral endoderm with implications for human development. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e362.	5.9	7
2	Is extra-embryonic endoderm a source of placental blood cells?. Experimental Hematology, 2020, 89, 37-42.	0.4	5
3	Severing umbilical ties. ELife, 2020, 9, .	6.0	2
4	Extragonadal primordial germ cells or placental progenitor cells?. Reproductive BioMedicine Online, 2018, 36, 6-11.	2.4	4
5	Generation of multipotent induced cardiac progenitor cells from mouse fibroblasts and potency testing in ex vivo mouse embryos. Nature Protocols, 2017, 12, 1029-1054.	12.0	10
6	Brachyury drives formation of a distinct vascular branchpoint critical for fetal-placental arterial union in the mouse gastrula. Developmental Biology, 2017, 425, 208-222.	2.0	8
7	STELLA collaborates in distinct mesendodermal cell subpopulations at the fetal-placental interface in the mouse gastrula. Developmental Biology, 2017, 425, 44-57.	2.0	9
8	Visceral endoderm and the primitive streak interact to build the fetal-placental interface of the mouse gastrula. Developmental Biology, 2017, 432, 98-124.	2.0	13
9	PRDM1/BLIMP1 is widely distributed to the nascent fetal–placental interface in the mouse gastrula. Developmental Dynamics, 2017, 246, 50-71.	1.8	15
10	Irx4 Marks a Multipotent, Ventricular-Specific Progenitor Cell. Stem Cells, 2016, 34, 2875-2888.	3.2	25
11	Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined Factors. Cell Stem Cell, 2016, 18, 354-367.	11.1	165
12	Mouse Primordial Germ Cells. International Review of Cell and Molecular Biology, 2014, 309, 1-57.	3.2	23
13	Mixl1 localizes to putative axial stem cell reservoirs and their posterior descendants in the mouse embryo. Gene Expression Patterns, 2014, 15, 8-20.	0.8	16
14	Widespread but tissue-specific patterns of interferon-induced transmembrane protein 3 (IFITM3,) Tj ETQq0 0 0 rg	gBT/Overl	ock 10 Tf 50
15	The hypoblast (visceral endoderm): an evo-devo perspective. Development (Cambridge), 2012, 139, 1059-1069.	2.5	105
16	STELLA-positive subregions of the primitive streak contribute to posterior tissues of the mouse gastrula. Developmental Biology, 2012, 363, 201-218.	2.0	25
17	Mesothelium of the murine allantois exhibits distinct regional properties. Journal of Morphology, 2011, 272, 536-556.	1.2	15
18	Hedgehog signaling in the posterior region of the mouse gastrula suggests manifold roles in the fetal-umbilical connection and posterior morphogenesis. Developmental Dynamics, 2011, 240, 2175-2193.	1.8	26

#	Article	IF	CITATIONS
19	The Allantoic Core Domain: New insights into development of the murine allantois and its relation to the primitive streak. Developmental Dynamics, 2009, 238, 532-553.	1.8	33
20	Collagen type IV and Perlecan exhibit dynamic localization in the Allantoic Core Domain, a putative stem cell niche in the murine allantois. Developmental Dynamics, 2009, 238, 3193-3204.	1.8	14
21	The enigmatic primitive streak: prevailing notions and challenges concerning the body axis of mammals. BioEssays, 2009, 31, 892-902.	2.5	42
22	Systematic localization of octâ€3/4 to the gastrulating mouse conceptus suggests manifold roles in mammalian development. Developmental Dynamics, 2008, 237, 464-475.	1.8	65
23	Embryological Origins of the Human Individual. DNA and Cell Biology, 2008, 27, 3-7.	1.9	4
24	The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis, 2007, 45, 237-258.	1.6	69
25	In Vitro Methods for Studying Vascularization of the Murine Allantois and Allantoic Union with the Chorion., 2006, 121, 239-272.		23
26	Localization of Brachyury (T) in embryonic and extraembryonic tissues during mouse gastrulation. Gene Expression Patterns, 2006, 6, 783-793.	0.8	60
27	Brachyury is required for elongation and vasculogenesis in the murine allantois. Development (Cambridge), 2006, 133, 2947-2959.	2.5	52
28	The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development (Cambridge), 2006, 133, 4183-4192.	2.5	153
29	Investigation into a role for the primitive streak in development of the murine allantois. Development (Cambridge), 2004, 131, 37-55.	2.5	42
30	Functional ablation of the mouseLdb1gene results in severe patterning defects during gastrulation. Development (Cambridge), 2003, 130, 495-505.	2.5	129
31	Florence Sabin and the Mechanism of Blood Vessel Lumenization During Vasculogenesis. Microcirculation, 2003, 10, 5-25.	1.8	15
32	Florence Sabin and the Mechanism of Blood Vessel Lumenization During Vasculogenesis. Microcirculation, 2003, 10, 5-25.	1.8	14
33	Multiple developmental roles of Ahnak are suggested by localization to sites of placentation and neural plate fusion in the mouse conceptus. Mechanisms of Development, 2002, 119, S31-S38.	1.7	14
34	Inhibition of trophoblast stem cell potential in chorionic ectoderm coincides with occlusion of the ectoplacental cavity in the mouse. Development (Cambridge), 2002, 129, 3913-3924.	2.5	117
35	Inhibition of trophoblast stem cell potential in chorionic ectoderm coincides with occlusion of the ectoplacental cavity in the mouse. Development (Cambridge), 2002, 129, 3913-24.	2.5	44
36	Study of the Murine Allantois by Allantoic Explants. Developmental Biology, 2001, 233, 347-364.	2.0	48

3

#	Article	IF	CITATIONS
37	1 The Murine Allantois. Current Topics in Developmental Biology, 1998, 39, 1-33.	2.2	40