
## Karen M Downs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/255821/publications.pdf Version: 2024-02-01



KADEN M DOWNS

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined<br>Factors. Cell Stem Cell, 2016, 18, 354-367.                                                       | 11.1 | 165       |
| 2  | The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development (Cambridge), 2006, 133, 4183-4192.                                     | 2.5  | 153       |
| 3  | Functional ablation of the mouseLdb1gene results in severe patterning defects during gastrulation.<br>Development (Cambridge), 2003, 130, 495-505.                                                       | 2.5  | 129       |
| 4  | Inhibition of trophoblast stem cell potential in chorionic ectoderm coincides with occlusion of the ectoplacental cavity in the mouse. Development (Cambridge), 2002, 129, 3913-3924.                    | 2.5  | 117       |
| 5  | The hypoblast (visceral endoderm): an evo-devo perspective. Development (Cambridge), 2012, 139,<br>1059-1069.                                                                                            | 2.5  | 105       |
| 6  | The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis, 2007, 45, 237-258.                                                       | 1.6  | 69        |
| 7  | Systematic localization of $oct\hat{a}\in 3/4$ to the gastrulating mouse conceptus suggests manifold roles in mammalian development. Developmental Dynamics, 2008, 237, 464-475.                         | 1.8  | 65        |
| 8  | Localization of Brachyury (T) in embryonic and extraembryonic tissues during mouse gastrulation.<br>Gene Expression Patterns, 2006, 6, 783-793.                                                          | 0.8  | 60        |
| 9  | Brachyury is required for elongation and vasculogenesis in the murine allantois. Development (Cambridge), 2006, 133, 2947-2959.                                                                          | 2.5  | 52        |
| 10 | Study of the Murine Allantois by Allantoic Explants. Developmental Biology, 2001, 233, 347-364.                                                                                                          | 2.0  | 48        |
| 11 | Inhibition of trophoblast stem cell potential in chorionic ectoderm coincides with occlusion of the ectoplacental cavity in the mouse. Development (Cambridge), 2002, 129, 3913-24.                      | 2.5  | 44        |
| 12 | Investigation into a role for the primitive streak in development of the murine allantois. Development<br>(Cambridge), 2004, 131, 37-55.                                                                 | 2.5  | 42        |
| 13 | The enigmatic primitive streak: prevailing notions and challenges concerning the body axis of mammals. BioEssays, 2009, 31, 892-902.                                                                     | 2.5  | 42        |
| 14 | 1 The Murine Allantois. Current Topics in Developmental Biology, 1998, 39, 1-33.                                                                                                                         | 2.2  | 40        |
| 15 | The Allantoic Core Domain: New insights into development of the murine allantois and its relation to the primitive streak. Developmental Dynamics, 2009, 238, 532-553.                                   | 1.8  | 33        |
| 16 | Hedgehog signaling in the posterior region of the mouse gastrula suggests manifold roles in the<br>fetal-umbilical connection and posterior morphogenesis. Developmental Dynamics, 2011, 240, 2175-2193. | 1.8  | 26        |
| 17 | STELLA-positive subregions of the primitive streak contribute to posterior tissues of the mouse gastrula. Developmental Biology, 2012, 363, 201-218.                                                     | 2.0  | 25        |
| 18 | Irx4 Marks a Multipotent, Ventricular-Specific Progenitor Cell. Stem Cells, 2016, 34, 2875-2888.                                                                                                         | 3.2  | 25        |

KAREN M DOWNS

| #  | Article                                                                                                                                                                                                                               | IF                | CITATIONS         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 19 | In Vitro Methods for Studying Vascularization of the Murine Allantois and Allantoic Union with the Chorion. , 2006, 121, 239-272.                                                                                                     |                   | 23                |
| 20 | Mouse Primordial Germ Cells. International Review of Cell and Molecular Biology, 2014, 309, 1-57.                                                                                                                                     | 3.2               | 23                |
| 21 | Widespread but tissue-specific patterns of interferon-induced transmembrane protein 3 (IFITM3,) Tj ETQq1 1 0.7                                                                                                                        | 784314 rgi<br>0.8 | 3T /Overloc<br>17 |
| 22 | Mixl1 localizes to putative axial stem cell reservoirs and their posterior descendants in the mouse embryo. Gene Expression Patterns, 2014, 15, 8-20.                                                                                 | 0.8               | 16                |
| 23 | Mesothelium of the murine allantois exhibits distinct regional properties. Journal of Morphology, 2011, 272, 536-556.                                                                                                                 | 1.2               | 15                |
| 24 | PRDM1/BLIMP1 is widely distributed to the nascent fetal–placental interface in the mouse gastrula.<br>Developmental Dynamics, 2017, 246, 50-71.                                                                                       | 1.8               | 15                |
| 25 | Florence Sabin and the Mechanism of Blood Vessel Lumenization During Vasculogenesis.<br>Microcirculation, 2003, 10, 5-25.                                                                                                             | 1.8               | 15                |
| 26 | Multiple developmental roles of Ahnak are suggested by localization to sites of placentation and neural plate fusion in the mouse conceptus. Mechanisms of Development, 2002, 119, S31-S38.                                           | 1.7               | 14                |
| 27 | Collagen type IV and Perlecan exhibit dynamic localization in the Allantoic Core Domain, a putative stem cell niche in the murine allantois. Developmental Dynamics, 2009, 238, 3193-3204.                                            | 1.8               | 14                |
| 28 | Florence Sabin and the Mechanism of Blood Vessel Lumenization During Vasculogenesis.<br>Microcirculation, 2003, 10, 5-25.                                                                                                             | 1.8               | 14                |
| 29 | Visceral endoderm and the primitive streak interact to build the fetal-placental interface of the mouse gastrula. Developmental Biology, 2017, 432, 98-124.                                                                           | 2.0               | 13                |
| 30 | Generation of multipotent induced cardiac progenitor cells from mouse fibroblasts and potency testing in ex vivo mouse embryos. Nature Protocols, 2017, 12, 1029-1054.                                                                | 12.0              | 10                |
| 31 | STELLA collaborates in distinct mesendodermal cell subpopulations at the fetal-placental interface in the mouse gastrula. Developmental Biology, 2017, 425, 44-57.                                                                    | 2.0               | 9                 |
| 32 | Brachyury drives formation of a distinct vascular branchpoint critical for fetal-placental arterial union in the mouse gastrula. Developmental Biology, 2017, 425, 208-222.                                                           | 2.0               | 8                 |
| 33 | The mouse fetalâ€placental arterial connection: A paradigm involving the primitive streak and visceral<br>endoderm with implications for human development. Wiley Interdisciplinary Reviews: Developmental<br>Biology, 2020, 9, e362. | 5.9               | 7                 |
| 34 | ls extra-embryonic endoderm a source of placental blood cells?. Experimental Hematology, 2020, 89,<br>37-42.                                                                                                                          | 0.4               | 5                 |
| 35 | Embryological Origins of the Human Individual. DNA and Cell Biology, 2008, 27, 3-7.                                                                                                                                                   | 1.9               | 4                 |
| 36 | Extragonadal primordial germ cells or placental progenitor cells?. Reproductive BioMedicine Online,<br>2018, 36, 6-11.                                                                                                                | 2.4               | 4                 |

| #  | Article                                    | IF  | CITATIONS |
|----|--------------------------------------------|-----|-----------|
| 37 | Severing umbilical ties. ELife, 2020, 9, . | 6.0 | 2         |