Isaac P Witz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2558043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer microenvironment and genomics: evolution in process. Clinical and Experimental Metastasis, 2022, 39, 85-99.	3.3	11
2	<i>LY6S,</i> a New IFN-Inducible Human Member of the Ly6a Subfamily Expressed by Spleen Cells and Associated with Inflammation and Viral Resistance. ImmunoHorizons, 2022, 6, 253-272.	1.8	7
3	<scp>Siteâ€specific</scp> metastasis: A cooperation between cancer cells and the metastatic microenvironment. International Journal of Cancer, 2021, 148, 1308-1322.	5.1	28
4	Constitutive low expression of antiviral effectors sensitizes melanoma cells to a novel oncolytic virus. International Journal of Cancer, 2021, 148, 2321-2334.	5.1	5
5	The melanoma brain metastatic microenvironment: aldolase C partakes in shaping the malignant phenotype of melanoma cells – a case of interâ€ŧumor heterogeneity. Molecular Oncology, 2021, 15, 1376-1390.	4.6	12
6	Cancer drug resistance induced by EMT:Ânovel therapeutic strategies. Archives of Toxicology, 2021, 95, 2279-2297.	4.2	92
7	Inter-Tumor Heterogeneity—Melanomas Respond Differently to GM-CSF-Mediated Activation. Cells, 2020, 9, 1683.	4.1	11
8	Upregulation of cell surface GD3 ganglioside phenotype is associated with human melanoma brain metastasis. Molecular Oncology, 2020, 14, 1760-1778.	4.6	27
9	The Challenge of Classifying Metastatic Cell Properties by Molecular Profiling Exemplified with Cutaneous Melanoma Cells and Their Cerebral Metastasis from Patient Derived Mouse Xenografts. Molecular and Cellular Proteomics, 2020, 19, 478-489.	3.8	12
10	The metastatic microenvironment: Melanoma–microglia crossâ€ŧalk promotes the malignant phenotype of melanoma cells. International Journal of Cancer, 2019, 144, 802-817.	5.1	34
11	Regeneration Enhances Metastasis: A Novel Role for Neurovascular Signaling in Promoting Melanoma Brain Metastasis. Frontiers in Neuroscience, 2019, 13, 297.	2.8	14
12	Delivery of packaged mail in the tumor microenvironment. Biochemical and Biophysical Research Communications, 2019, 520, 705.	2.1	0
13	Cystatin C takes part in melanoma-microglia cross-talk:Âpossible implications for brain metastasis. Clinical and Experimental Metastasis, 2018, 35, 369-378.	3.3	16
14	A history of exploring cancer in context. Nature Reviews Cancer, 2018, 18, 359-376.	28.4	361
15	P-REX1 amplification promotes progression of cutaneous melanoma via the PAK1/P38/MMP-2 pathway. Cancer Letters, 2017, 407, 66-75.	7.2	14
16	The Beta Subunit of Hemoglobin (HBB2/HBB) Suppresses Neuroblastoma Growth and Metastasis. Cancer Research, 2017, 77, 14-26.	0.9	31
17	CCR4 is a determinant of melanoma brain metastasis. Oncotarget, 2017, 8, 31079-31091.	1.8	65
18	ANGPTL4 promotes the progression of cutaneous melanoma to brain metastasis. Oncotarget, 2017, 8, 75778-75796.	1.8	23

#	Article	IF	CITATIONS
19	Tumor Microenvironment. , 2017, , 4675-4679.		Ο
20	Hexokinase 2 is a determinant of neuroblastoma metastasis. British Journal of Cancer, 2016, 114, 759-766.	6.4	68
21	PHOX2B is a suppressor of neuroblastoma metastasis. Oncotarget, 2016, 7, 10627-10637.	1.8	7
22	The metastatic microenvironment: Claudinâ€l suppresses the malignant phenotype of melanoma brain metastasis. International Journal of Cancer, 2015, 136, 1296-1307.	5.1	44
23	The CASC15 Long Intergenic Noncoding RNA Locus Is Involved in Melanoma Progression and Phenotype Switching. Journal of Investigative Dermatology, 2015, 135, 2464-2474.	0.7	90
24	Epigenomic landscape of melanoma progression to brain metastasis: unexplored therapeutic alternatives. Epigenomics, 2015, 7, 1303-1311.	2.1	18
25	Astrocytes facilitate melanoma brain metastasis via secretion ofÂ <scp>IL</scp> â€23. Journal of Pathology, 2015, 236, 116-127.	4.5	95
26	Vemurafenib resistance selects for highly malignant brain and lung-metastasizing melanoma cells. Cancer Letters, 2015, 361, 86-96.	7.2	45
27	Epigenetic Changes of EGFR Have an Important Role in BRAF Inhibitor–Resistant Cutaneous Melanomas. Journal of Investigative Dermatology, 2015, 135, 532-541.	0.7	79
28	The role played by the microenvironment in site-specific metastasis. Cancer Letters, 2014, 352, 54-58.	7.2	54
29	The metastatic microenvironment: Lungâ€derived factors control the viability of neuroblastoma lung metastasis. International Journal of Cancer, 2013, 133, 2296-2306.	5.1	18
30	The Metastatic Microenvironment. , 2013, , 15-38.		9
31	The metastatic microenvironment: Brainâ€residing melanoma metastasis and dormant micrometastasis. International Journal of Cancer, 2012, 131, 1071-1082.	5.1	74
32	The metastatic microenvironment: Brainâ€derived soluble factors alter the malignant phenotype of cutaneous and brainâ€metastasizing melanoma cells. International Journal of Cancer, 2012, 131, 2509-2518.	5.1	28
33	Lung-Residing Metastatic and Dormant Neuroblastoma Cells. American Journal of Pathology, 2011, 179, 524-536.	3.8	17
34	Tumor Microenvironment. , 2011, , 3797-3799.		0
35	Geneâ€expressionâ€based analysis of local and metastatic neuroblastoma variants reveals a set of genes associated with tumor progression in neuroblastoma patients. International Journal of Cancer, 2010, 126, 1570-1581.	5.1	17
36	The 5th International Conference on Tumor Microenvironment: Progression, Therapy and Prevention Versailles, France, October 20–24, 2009. Cancer Microenvironment, 2010, 3, 1-5.	3.1	7

#	Article	IF	CITATIONS
37	Chemokine–chemokine receptor axes in melanoma brain metastasis. Immunology Letters, 2010, 130, 107-114.	2.5	61
38	The Tumor Microenvironment: The Making of a Paradigm. Cancer Microenvironment, 2009, 2, 9-17.	3.1	164
39	The involvement of the fractalkine receptor in the transmigration of neuroblastoma cells through bone-marrow endothelial cells. Cancer Letters, 2009, 273, 127-139.	7.2	42
40	Unsung Hero Robert C. Gallo. Science, 2009, 323, 206-207.	12.6	2
41	The involvement of the sLe-a selectin ligand in the extravasation of human colorectal carcinoma cells. Immunology Letters, 2008, 116, 218-224.	2.5	20
42	The selectin–selectin ligand axis in tumor progression. Cancer and Metastasis Reviews, 2008, 27, 19-30.	5.9	118
43	Eâ€selectin regulates gene expression in metastatic colorectal carcinoma cells and enhances HMGB1 release. International Journal of Cancer, 2008, 123, 1741-1750.	5.1	32
44	Generation and Characterization of Novel Local and Metastatic Human Neuroblastoma Variants. Neoplasia, 2008, 10, 817-IN15.	5.3	22
45	Tumor–Microenvironment Interactions: Dangerous Liaisons. Advances in Cancer Research, 2008, 100, 203-229.	5.0	113
46	Yin-Yang Activities and Vicious Cycles in the Tumor Microenvironment. Cancer Research, 2008, 68, 9-13.	0.9	115
47	CXCL10 Promotes Invasion-Related Properties in Human Colorectal Carcinoma Cells. Cancer Research, 2007, 67, 3396-3405.	0.9	179
48	The tumor microenvironment in the post-PAGET era. Cancer Letters, 2006, 242, 1-10.	7.2	135
49	The Pyst2-L phosphatase is involved in cell-crowding. Immunology Letters, 2006, 104, 138-145.	2.5	1
50	The involvement of selectins and their ligands in tumor-progression. Immunology Letters, 2006, 104, 89-93.	2.5	40
51	Tumor-Microenvironment Interactions. Cancer Treatment and Research, 2006, , 125-140.	0.5	32
52	Tumor-microenvironment interactions: the selectin-selectin ligand axis in tumor-endothelium cross talk. Cancer Treatment and Research, 2006, 130, 125-40.	0.5	20
53	Cellular characteristics of neuroblastoma cells: regulation by the ELRâ^'-CXC chemokine CXCL10 and expression of a CXCR3-like receptor. Cytokine, 2005, 29, 105-117.	3.2	34
54	Tumor-Microenvironment Interactions. Cancer Research, 2004, 64, 6571-6578.	0.9	62

#	Article	IF	CITATIONS
55	The tumor microenvironment: CXCR4 is associated with distinct protein expression patterns in neuroblastoma cells. Immunology Letters, 2004, 92, 163-169.	2.5	25
56	The expression of the chemokine receptor CXCR3 and its ligand, CXCL10, in human breast adenocarcinoma cell lines. Immunology Letters, 2004, 92, 171-178.	2.5	85
57	Characterization of the dual-specificity phosphatasePYST2 and its transcripts. Genes Chromosomes and Cancer, 2004, 39, 37-47.	2.8	15
58	Does the dual-specificity MAPK phosphatase Pyst2-L lead a monogamous relationship with the Rek2 protein?. Immunology Letters, 2004, 92, 149-149.	2.5	0
59	Progression of mouse mammary tumors: MCP-1-TNF? cross-regulatory pathway and clonal expression of promalignancy and antimalignancy factors. International Journal of Cancer, 2003, 106, 879-886.	5.1	62
60	Dual-specificity phosphatase Pyst2-L is constitutively highly expressed in myeloid leukemia and other malignant cells. Oncogene, 2003, 22, 7649-7660.	5.9	33
61	Overexpression of the dual-specificity MAPK phosphatase PYST2 in acute leukaemia. Cancer Letters, 2003, 199, 185-192.	7.2	32
62	cDNA Microarray Analysis Reveals an Overexpression of the Dual-Specificity MAPK Phosphatase PYST2 in Acute Leukemia. Methods in Enzymology, 2003, 366, 103-113.	1.0	21
63	Human Ly-6 antigen E48 (Ly-6D) regulates important interaction parameters between endothelial cells and head-and-neck squamous carcinoma cells. International Journal of Cancer, 2002, 98, 803-810.	5.1	40
64	The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. Oncogene, 2002, 21, 3969-3977.	5.9	72
65	The tumour microenvironment—Introduction. Seminars in Cancer Biology, 2002, 12, 87-88.	9.6	10
66	Receptors involved in microenvironment-driven molecular evolution of cancer cells. Seminars in Cancer Biology, 2002, 12, 139-147.	9.6	13
67	The FX Enzyme Is a Functional Component of Lymphocyte Activation. Cellular Immunology, 2001, 213, 141-148.	3.0	16
68	A Possible Role for CXCR4 and Its Ligand, the CXC Chemokine Stromal Cell-Derived Factor-1, in the Development of Bone Marrow Metastases in Neuroblastoma. Journal of Immunology, 2001, 167, 4747-4757.	0.8	370
69	Presence and functions of immune components in the tumor microenvironment. Advances in Experimental Medicine and Biology, 2001, 495, 317-324.	1.6	10
70	Differential expression of genes by tumor cells of a low or a high malignancy phenotype: The case of murine and human Ly-6 proteins. Journal of Cellular Biochemistry, 2000, 77, 61-66.	2.6	29
71	The GPI-linked Ly-6 Antigen E48 Regulates Expression Levels of the FX Enzyme and of E-selectin Ligands on Head and Neck Squamous Carcinoma Cells. Journal of Biological Chemistry, 2000, 275, 12833-12840.	3.4	29
72	MCP-1 expression as a potential contributor to the high malignancy phenotype of murine mammary adenocarcinoma cells. Immunology Letters, 1999, 68, 141-146.	2.5	35

#	Article	IF	CITATIONS
73	Preleukemia in long-term plasmacytoma-regressor mice. , 1998, 76, 689-693.		3
74	Expression of Ly-6, a marker for highly malignant murine tumor cells, is regulated by growth conditions and stress. , 1998, 77, 306-313.		36
75	The murine Fc-gamma (Fcl ³) receptor type II B1 is a tumorigenicity-enhancing factor in polyoma-virus-transformed 3T3 cells. , 1996, 65, 221-229.		25
76	Contribution of the intracellular domain of murine FC-gamma receptor type IIB1 to its tumor-enhancing potential. , 1996, 68, 219-227.		21
77	TNFα and anti-Fas antibodies regulate Ly-6E.1 expression by tumor cells: A possible link between angiogenesis and Ly-6E.1. Immunology Letters, 1996, 54, 207-213.	2.5	8
78	Detection of immunoglobulin A anticardiolipin antibodies in cervical mucus from in vitro fertilization patients and fertile women. Fertility and Sterility, 1995, 64, 441-443.	1.0	4
79	Increased Antiphospholipid Antibody Activity in Inâ€Vitro Fertilization Patients Is Not Treatmentâ€Dependent but Rather an Inherent Characteristic of the Infertile State. American Journal of Reproductive Immunology, 1995, 34, 370-374.	1.2	25
80	Myeloproliferation in long-term plasmacytoma-regressor mice. International Journal of Cancer, 1994, 56, 208-213.	5.1	3
81	AN association between high Ly-6A/E expression on tumor cells and a highly malignant phenotype. International Journal of Cancer, 1994, 59, 684-691.	5.1	33
82	Phenotypic Properties of 3T3 Cells Transformed in vitro with Polyoma Virus and Passaged Once in Syngeneic Animals. Immunobiology, 1992, 185, 281-291.	1.9	12
83	Possibilities of Interference with the Immune System of Tumor Bearers by Non-Lymphoid FcÎ ³ RII Expressing Tumor Cells. Immunobiology, 1992, 185, 415-425.	1.9	11
84	Autoantibody-Mediated Regulation of Tumor Growtha. Annals of the New York Academy of Sciences, 1992, 651, 393-408.	3.8	8
85	FcR may function as a progression factor of nonlymphoid tumors. Immunologic Research, 1992, 11, 283-295.	2.9	21
86	ln vivo tumorigenicity and in vitro sensitivity to tumor-necrosis-factorα mediated killing of c-Ha-ras-transformed cells. Cancer Immunology, Immunotherapy, 1992, 35, 388-394.	4.2	3
87	The relationship between in vitro fertilization and naturally occurring antibodies: evidence for increased production of antiphospholipid autoantibodies. Fertility and Sterility, 1991, 56, 718-724.	1.0	75
88	Some cellular and molecular characteristics of high and low tumorigenicity variants of polyoma-virus transformed cells. Molecular Immunology, 1990, 27, 1219-1228.	2.2	4
89	Effect in vivo of recombinant GM SF on neutropenia and survival in mice treated by highâ€dose melphalan. European Journal of Haematology, 1989, 43, 240-244.	2.2	1
90	The immune system during the precancer period: naturally-occurring tumor reactive monoclonal antibodies and urethane carcinogenesis. Immunology Letters, 1988, 18, 181-189.	2.5	11

#	Article	IF	CITATIONS
91	Further studies on the determinant recognized by naturally-occurring murine autoantibodies reacting with bromelain-treated erythrocytes. Immunology Letters, 1988, 18, 191-200.	2.5	4
92	Comparison of NK Activity in Mouse Spleen and Peripheral Blood Lymphocytes. Immunobiology, 1988, 177, 449-459.	1.9	6
93	Do Naturally Occurring Antibodies Play a Role in the Progression and Proliferation of Tumor Cells?. International Reviews of Immunology, 1988, 3, 133-145.	3.3	9
94	2′ Deoxycoformycin and human hemopoietic cells in culture. Developmental and Comparative Immunology, 1984, 8, 931-937.	2.3	0
95	Natural host defence during oncogenesis. NK activity and dimethylbenzanthracene carcinogenesis. International Journal of Cancer, 1983, 31, 67-73.	5.1	30
96	Immunological approaches to cancer therapeutics. Journal of Immunological Methods, 1983, 65, 274-275.	1.4	0
97	Monoclonal antibodies from mice bearing polyoma virus-induced tumor. Cancer Immunology, Immunotherapy, 1982, 12, 217-224.	4.2	9
98	Some characteristics of natural cytostatic mouse splenocytes. Journal of Immunological Methods, 1981, 40, 193-208.	1.4	11
99	Separation of tumor-seeking small lymphocytes and tumor cells using percoll velocity gradients. Journal of Immunological Methods, 1981, 41, 43-56.	1.4	5
100	The participation of trimethylammonium in the mouse erythrocyte epitope recognized by monoclonal autoantibodies. Immunology Letters, 1981, 3, 315-319.	2.5	22
101	Serological detection of a polyoma-tumor-associated membrane antigen. International Journal of Cancer, 1979, 23, 683-690.	5.1	15
102	Idiotype-binding cells in plasmacytoma-bearing mice. Cellular Immunology, 1979, 44, 1-8.	3.0	1
103	The elution of antibodies from viable murine tumor cells. Journal of Immunological Methods, 1979, 26, 345-353.	1.4	12
104	Binding patterns of immunoglobulins from tumor-bearing mice to the corresponding tumor cells. Journal of Immunological Methods, 1978, 22, 37-49.	1.4	3
105	Characterization of immunoglobulins eluted from murine tumor cells: Binding patterns of cytotoxic anti-tumor IgG. Journal of Immunological Methods, 1978, 22, 51-62.	1.4	18
106	Lymphocytotoxic Autoantibodies Eluted From In Vivo Propagating Sarcoma Cells of Mice: Brief Communication 2. Journal of the National Cancer Institute, 1978, 60, 1509-1513.	6.3	11
107	Tumor-Bound Immunoglobulins:in SituExpressions Of Humoral Immunity. Advances in Cancer Research, 1977, , 95-148.	5.0	78
108	Tumor-bound immunoglobulins. Evidence for thein vivo coating of tumor cells by potentially cytotoxic anti-tumor antibodies. International Journal of Cancer, 1976, 17, 90-97.	5.1	51

#	Article	IF	CITATIONS
109	Tumor bound immunoglobulins: The relationship between thein vivo coating of tumor cells by potentially cytotoxic anti-tumor antibodies, and the expression of immune complex receptors. International Journal of Cancer, 1976, 18, 116-121.	5.1	23
110	Serologically detectable specific and cross-reactive antigens on the membrane of a polyoma virus-induced murine tumor. International Journal of Cancer, 1976, 18, 243-249.	5.1	27
111	Antibody-dependent cell-mediated cytotoxic activity in syngeneic mouse ascites tumors. International Journal of Cancer, 1975, 16, 870-880.	5.1	8
112	Cellular selection and regulation in the immune response. Journal of Immunological Methods, 1975, 7, 145.	1.4	0
113	PROTECTIVE AND CELLULAR IMMUNE RESPONSES TO IDIOTYPIC DETERMINANTS ON CELLS FROM A SPONTANEOUS LYMPHOMA OF NZB/NZW F1 MICE. Journal of Experimental Medicine, 1974, 140, 1547-1558.	8.5	71
114	Degradation of immunoglobulins by lysosomal enzymes of tumors—I. Demonstration of the phenomenon using mouse tumors. Immunochemistry, 1973, 10, 565-570.	1.2	21
115	Tumorâ€associated immunoglobulins. enhancement of syngeneic tumors by igg2â€containing tumor eluates. International Journal of Cancer, 1972, 9, 242-247.	5.1	65
116	The immunosuppressive capacity of alloantisera in mice, including sera directed primarily against thymic antigens. Cellular Immunology, 1971, 2, 362-372.	3.0	6
117	Tumor-associated immunogolobulins. The elution of IgC2 from mouse tumors. International Journal of Cancer, 1970, 6, 361-372.	5.1	48
118	IMMUNOSUPPRESSIVE ACTIVITY OF MOUSE ALLOANTIBODIES. Transplantation, 1969, 8, 516-519.	1.0	5