List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/255628/publications.pdf Version: 2024-02-01



LUIS F FONSECA

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Fluorinated Iron and Cobalt Phthalocyanine Nanowire Chemiresistors for Environmental Gas<br>Monitoring at Parts-per-Billion Levels. ACS Applied Nano Materials, 2022, 5, 4688-4699. | 5.0  | 10        |
| 2  | Thermoelectric properties of antimony selenide hexagonal nanotubes. Nanotechnology, 2021, 32, 095705.                                                                               | 2.6  | 5         |
| 3  | Palladium/cobalt nanowires with improved hydrogen sensing stability at ultra-low temperatures.<br>Nanoscale, 2019, 11, 21074-21080.                                                 | 5.6  | 24        |
| 4  | Single nanowire measurements of room temperature ferromagnetism in FeSi nanowires and the effects of Mn-doping. Nanotechnology, 2019, 30, 014001.                                   | 2.6  | 2         |
| 5  | High Curie temperature CoSi nanowires by Mn-doping. Journal of Applied Physics, 2018, 124, .                                                                                        | 2.5  | 1         |
| 6  | Thermoelectric properties of SnSe nanowires with different diameters. Scientific Reports, 2018, 8, 11966.                                                                           | 3.3  | 34        |
| 7  | Thermoelectric properties and thermal tolerance of indium tin oxide nanowires. Nanotechnology, 2018, 29, 364001.                                                                    | 2.6  | 10        |
| 8  | Surface morphology-controlled fabrication of Na2WO4 films with high structural stability. Chemical Physics Letters, 2016, 653, 73-77.                                               | 2.6  | 5         |
| 9  | Single-Crystal Î <sup>3</sup> -MnS Nanowires Conformally Coated with Carbon. ACS Applied Materials &<br>Interfaces, 2014, 6, 1180-1186.                                             | 8.0  | 68        |
| 10 | Shape-controlled synthesis of palladium and copper superlattice nanowires for high-stability hydrogen sensors. Scientific Reports, 2014, 4, 3773.                                   | 3.3  | 31        |
| 11 | A comprehensive study of thermoelectric and transport properties of Î <sup>2</sup> -silicon carbide nanowires.<br>Journal of Applied Physics, 2013, 114, .                          | 2.5  | 36        |
| 12 | Synthesis and transport properties of La0.67Sr0.33MnO3 conformally-coated on carbon nanotubes.<br>Carbon, 2013, 65, 252-260.                                                        | 10.3 | 15        |
| 13 | Colorimetric Sensors: Temperature-Activated Reverse Sensing Behavior of Pd Nanowire Hydrogen<br>Sensors (Small 2/2013). Small, 2013, 9, 187-187.                                    | 10.0 | 0         |
| 14 | Wet-Chemical Approaches to Porous Nanowires with Linear, Spiral, and Meshy Topologies. Nano<br>Letters, 2013, 13, 5642-5646.                                                        | 9.1  | 28        |
| 15 | Temperatureâ€Activated Reverse Sensing Behavior of Pd Nanowire Hydrogen Sensors. Small, 2013, 9,<br>188-192.                                                                        | 10.0 | 32        |
| 16 | Mechanical characterization of pristine and hydrogen-exposed palladium nanowires by <i>in<br/>situ</i> TEM. Nanotechnology, 2013, 24, 035701.                                       | 2.6  | 12        |
| 17 | Photoluminescence of Er-doped silicon-rich oxide thin films with high Al concentrations. Physics Procedia, 2011, 13, 54-57.                                                         | 1.2  | 0         |
| 18 | SiN/bamboo like carbon nanotube composite electrodes for lithium ion rechargeable batteries.<br>Electrochimica Acta, 2010, 55, 2269-2274.                                           | 5.2  | 17        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Sputtering configurations and the luminescence of rare earth-doped silicon rich oxide thin films.<br>Optical Materials, 2010, 32, 576-581.                                      | 3.6 | 4         |
| 20 | <i>In-situ</i> TEM-STM Observations of SWCNT Ropes/tubular Transformations. Materials Research<br>Society Symposia Proceedings, 2009, 1204, 1.                                  | 0.1 | 3         |
| 21 | Growth and characterization of branched carbon nanostructures arrays in nano-patterned surfaces from porous silicon substrates. Micron, 2009, 40, 80-84.                        | 2.2 | 9         |
| 22 | The influence of roughness on the mechanical spectroscopy of SiO2 nanorods grown by e-beam irradiation. Superlattices and Microstructures, 2009, 45, 458-468.                   | 3.1 | 2         |
| 23 | Luminescence of Er-doped silicon oxide–zirconia thin films. Journal of Luminescence, 2009, 129,<br>696-703.                                                                     | 3.1 | 4         |
| 24 | Synthesis of diamond nanocrystals on polyimide film. Diamond and Related Materials, 2009, 18, 113-116.                                                                          | 3.9 | 10        |
| 25 | Porous silicon for field emission display applications. Physica Status Solidi C: Current Topics in Solid<br>State Physics, 2008, 5, 3479-3483.                                  | 0.8 | Ο         |
| 26 | Tuning the cathodoluminescence of porous silicon films. Journal of Luminescence, 2008, 128, 321-327.                                                                            | 3.1 | 9         |
| 27 | Photoluminescence of Er-doped Si-SiO2 and Al–Si-SiO2 sputtered thin films. Journal of Luminescence, 2008, 128, 897-900.                                                         | 3.1 | 5         |
| 28 | Luminescence of rare earth-doped Si–ZrO2 co-sputtered films. Journal of Luminescence, 2008, 128,<br>1197-1204.                                                                  | 3.1 | 22        |
| 29 | Comparative study of the luminescence properties of Er-, Nd- and Tm-doped Si–ZrO2CO-sputtered films.<br>Journal of Physics Condensed Matter, 2008, 20, 315003.                  | 1.8 | 6         |
| 30 | Electron beam induced growth of silica nanorods and heterostructures in porous silicon.<br>Nanotechnology, 2007, 18, 405308.                                                    | 2.6 | 17        |
| 31 | Electron-Beam Induced Growth of Silica Nanowires and Silica/Carbon Heterostructures. Materials<br>Research Society Symposia Proceedings, 2007, 1017, 116.                       | 0.1 | 2         |
| 32 | Growth of Branched Carbon Nanostructures in Nanopatterned Surfaces Created by Focused Ion Beam.<br>Materials Research Society Symposia Proceedings, 2007, 1059, 1.              | 0.1 | 1         |
| 33 | Characterization of annealing effect on the surface, interface and bulk of AlN grown on SiC.<br>International Journal of Refractory Metals and Hard Materials, 2006, 24, 55-60. | 3.8 | 1         |
| 34 | Enhancement of the photoluminescence properties of porous silicon by silica gel coating. Journal of<br>Applied Physics, 2006, 99, 114313.                                       | 2.5 | 9         |
| 35 | Cathodoluminescence of modified porous silicon for field emission displays applications. , 2005, , .                                                                            |     | 0         |
| 36 | Electron-beam-induced growth of silicon multibranched nanostructures. Applied Physics Letters, 2005, 87, 113111.                                                                | 3.3 | 9         |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Combinatorial Fabrication and Study of Luminescent Nanocrystalline Si Particles Embedded in a SiO2<br>Matrix. Materials Research Society Symposia Proceedings, 2005, 894, 1.                                                  | 0.1 | 0         |
| 38 | Optical properties of nanocrystalline silicon within silica gel monoliths. Journal of Applied Physics, 2004, 96, 2240-2243.                                                                                                   | 2.5 | 13        |
| 39 | Physicochemical Characterization of Porous Silicon Surfaces Etched in Salt Solutions of Varying Compositions and pH. Materials Research Society Symposia Proceedings, 2003, 762, 17191.                                       | 0.1 | 0         |
| 40 | OPTICAL AND ELECTRICAL PROPERTIES OF PURE AND RARE-EARTH-DOPED nc-Si/SiO2 COMPOSITES PREPARED BY RF COSPUTTERING. Surface Review and Letters, 2002, 09, 1655-1660.                                                            | 1.1 | 2         |
| 41 | Monte Carlo Results for the Ferroelectric Phase Transitions of TGS, NaNO 2 , and DKDP Ultra Thin Films. Integrated Ferroelectrics, 2002, 42, 385-395.                                                                         | 0.7 | 0         |
| 42 | Bipolar phototransport in π-conjugated polymer /C60 composites. Applied Physics Letters, 2001, 79,<br>197-199.                                                                                                                | 3.3 | 26        |
| 43 | Photoluminescence of Eu3+ in Si/SiO2 Nanostructure Films. Materials Research Society Symposia<br>Proceedings, 2000, 609, 1141.                                                                                                | 0.1 | 2         |
| 44 | Surface and Size Effects in TGS, NaNO2, and DKDP Nanocrystals. Materials Research Society Symposia<br>Proceedings, 2000, 655, 42.                                                                                             | 0.1 | 0         |
| 45 | Relation between electroluminescence and photoluminescence in porous silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 72, 138-141.                                          | 3.5 | 7         |
| 46 | Comparative analysis of the 1.54 μm emission of Er-doped Si/SiO2 films and the size distribution of the nanostructure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 72, 109-112. | 3.5 | 7         |
| 47 | Development of Silicon-Based UV-Photodetector Prototypes using Photoluminescent Nanocrystalline<br>Silicon Overlayers. Materials Research Society Symposia Proceedings, 2000, 638, 1.                                         | 0.1 | 0         |
| 48 | Monte Carlo analysis of the surface and size effects in ferroelectric nanocrystals. Integrated Ferroelectrics, 2000, 29, 149-159.                                                                                             | 0.7 | 2         |
| 49 | A new analysis method to characterize the S-band luminescence decay of porous Si. Journal of Luminescence, 1999, 81, 1-6.                                                                                                     | 3.1 | 2         |
| 50 | Observation of picosecond nonlinear optical response from porous silicon. Journal of Luminescence,<br>1999, 83-84, 37-41.                                                                                                     | 3.1 | 6         |
| 51 | Chemically Derived Prussian Blue Solâ^'Gel Composite Thin Films. Chemistry of Materials, 1999, 11, 135-140.                                                                                                                   | 6.7 | 90        |
| 52 | Silicon-Based UV Detector Prototypes Using Luminescent Poroussilicon Films. Materials Research<br>Society Symposia Proceedings, 1998, 536, 123.                                                                               | 0.1 | 0         |
| 53 | Sensitization of the minority carrier lifetime in hydrogenated amorphous silicon. Applied Physics<br>Letters, 1998, 72, 103-105.                                                                                              | 3.3 | 10        |
| 54 | Electron-diffraction effects on scanning tunneling spectroscopy. Physical Review B, 1997, 55, 15912-15918.                                                                                                                    | 3.2 | 7         |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Thermal quenching of the minority-carrier lifetime in a-Si:H. Physical Review B, 1997, 55, R15997-R16000.                                                                    | 3.2 | 10        |
| 56 | Study of the enhancement effects of composite films on the magneto-optical Kerr effect. Journal of<br>Magnetism and Magnetic Materials, 1996, 161, 379-384.                  | 2.3 | 1         |
| 57 | Time-independent tunneling current of a tip-sample system in scanning tunneling spectroscopy.<br>Physical Review B, 1995, 51, 2501-2505.                                     | 3.2 | 7         |
| 58 | Theory of tunneling spectroscopy for semiconductors. Physical Review B, 1994, 49, 1981-1988.                                                                                 | 3.2 | 14        |
| 59 | Calculation of the aggregation and electrodynamic effects in granular systems. Physica A: Statistical<br>Mechanics and Its Applications, 1994, 207, 123-130.                 | 2.6 | 4         |
| 60 | T-matrix approach for calculating local fields around clusters of rotated spheroids. Applied Optics, 1993, 32, 2164.                                                         | 2.1 | 7         |
| 61 | Resistivity and electrical noise in granular metal composites. Physical Review B, 1993, 48, 14915-14924.                                                                     | 3.2 | 16        |
| 62 | Calculation of Local Fields for Clusters of Ellipsoids Within the T-Katrix Approach. Materials<br>Research Society Symposia Proceedings, 1990, 195, 109.                     | 0.1 | 0         |
| 63 | T-matrix approach for the calculation of local fields in the neighborhood of small clusters in the electrodynamic regime. Physical Review B, 1989, 40, 7491-7500.            | 3.2 | 10        |
| 64 | Multiple scattering renormalized T matrix theory for the dielectric constant of non-homogeneous thin films. Thin Solid Films, 1985, 125, 243-250.                            | 1.8 | 5         |
| 65 | Multiple-scattering theories including correlation effects to obtain the effective dielectric constant of nonhomogeneous thin films. Physical Review B, 1985, 32, 3429-3441. | 3.2 | 20        |
| 66 | Corrections to the optical properties of cermets. III. Multiple scattering corrections. Ferroelectrics,<br>Letters Section, 1984, 2, 17-24.                                  | 1.0 | 2         |
| 67 | Corrections to the optical properties of cermets. I. Quantum size effects. Ferroelectrics, 1984, 54, 223-226.                                                                | 0.6 | 5         |
| 68 | Corrections to the optical properties of cermets. II. Application of the quantum size effects to a real cermet. Ferroelectrics, 1984, 54, 227-230.                           | 0.6 | 3         |