Trenton W J Garner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2555910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Challenging a host–pathogen paradigm: Susceptibility to chytridiomycosis is decoupled from genetic erosion. Journal of Evolutionary Biology, 2022, 35, 589-598.	1.7	1
2	Microbiome function predicts amphibian chytridiomycosis disease dynamics. Microbiome, 2022, 10, 44.	11.1	12
3	Host Identity Matters—Up to a Point: The Community Context of <i>Batrachochytrium dendrobatidis</i> Transmission. American Naturalist, 2022, 200, 584-597.	2.1	4
4	Discriminating lineages of Batrachochytrium dendrobatidis using quantitative PCR. Molecular Ecology Resources, 2021, 21, 1452-1459.	4.8	7
5	Alpine Newts (Ichthyosaura alpestris) Avoid Habitats Previously Used by Parasite-Exposed Conspecifics. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	3
6	Exposure to Batrachochytrium dendrobatidis affects chemical defences in two anuran amphibians, Rana dalmatina and Bufo bufo. Bmc Ecology and Evolution, 2021, 21, 135.	1.6	8
7	Spatiotemporal heterogeneity decouples infection parameters of amphibian chytridiomycosis. Journal of Animal Ecology, 2020, 89, 1109-1121.	2.8	9
8	Response to Comment on "Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity― Science, 2020, 367, .	12.6	15
9	Conservation decisions under pressure: Lessons from an exercise in rapid response to wildlife disease. Conservation Science and Practice, 2020, 2, e141.	2.0	11
10	Chytrid fungi and global amphibian declines. Nature Reviews Microbiology, 2020, 18, 332-343.	28.6	200
11	Genetic and demographic vulnerability of adder populations: Results of a genetic study in mainland Britain. PLoS ONE, 2020, 15, e0231809.	2.5	3
12	Sex-biased parasitism and expression of a sexual signal. Biological Journal of the Linnean Society, 2020, 131, 785-800.	1.6	10
13	Occurrence of Batrachochytrium dendrobatidis in Sweden: higher infection prevalence in southern species. Diseases of Aquatic Organisms, 2020, 140, 209-218.	1.0	8
14	Significant reductions of host abundance weakly impact infection intensity of Batrachochytrium dendrobatidis. PLoS ONE, 2020, 15, e0242913.	2.5	7
15	Modelling Ranavirus Transmission in Populations of Common Frogs (Rana temporaria) in the United Kingdom. Viruses, 2019, 11, 556.	3.3	7
16	Outbreaks of an Emerging Viral Disease Covary With Differences in the Composition of the Skin Microbiome of a Wild United Kingdom Amphibian. Frontiers in Microbiology, 2019, 10, 1245.	3.5	29
17	Effects of historic and projected climate change on the range and impacts of an emerging wildlife disease. Global Change Biology, 2019, 25, 2648-2660.	9.5	43
18	Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science, 2019, 363, 1459-1463.	12.6	805

#	Article	IF	CITATIONS
19	Common midwife toad ranaviruses replicate first in the oral cavity of smooth newts (Lissotriton) Tj ETQq1 1 0.78	4314 rgBT	/Overlock
20	Mitigating Batrachochytrium salamandrivorans in Europe. Amphibia - Reptilia, 2019, 40, 265-290.	0.5	26
21	Diversity-Stability Dynamics of the Amphibian Skin Microbiome and Susceptibility to a Lethal Viral Pathogen. Frontiers in Microbiology, 2019, 10, 2883.	3.5	49
22	Discussing the future of amphibians in research. Lab Animal, 2019, 48, 16-18.	0.4	8
23	Longâ€ŧerm monitoring of an amphibian community after a climate change―and infectious diseaseâ€driven species extirpation. Global Change Biology, 2018, 24, 2622-2632.	9.5	35
24	Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nature Communications, 2018, 9, 693.	12.8	126
25	A novel approach to wildlife transcriptomics provides evidence of diseaseâ€mediated differential expression and changes to the microbiome of amphibian populations. Molecular Ecology, 2018, 27, 1413-1427.	3.9	32
26	Routine habitat switching alters the likelihood and persistence of infection with a pathogenic parasite. Functional Ecology, 2018, 32, 1262-1270.	3.6	32
27	A possible reservoir of <i>Batrachochytrium dendrobatidis</i> in Australia. Animal Conservation, 2018, 21, 104-105.	2.9	4
28	Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi. Scientific Reports, 2018, 8, 7772.	3.3	24
29	Recent Asian origin of chytrid fungi causing global amphibian declines. Science, 2018, 360, 621-627.	12.6	389
30	An emerging viral pathogen truncates population age structure in a European amphibian and may reduce population viability. PeerJ, 2018, 6, e5949.	2.0	25
31	Itraconazole and thiophanate-methyl fail to clear tadpoles naturally infected with the hypervirulent lineage of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 2018, 131, 73-78.	1.0	2
32	Islands within an island: Population genetic structure of the endemic Sardinian newt, <i>Euproctus platycephalus</i> . Ecology and Evolution, 2017, 7, 1190-1211.	1.9	6
33	Impact of asynchronous emergence of two lethal pathogens on amphibian assemblages. Scientific Reports, 2017, 7, 43260.	3.3	46
34	Pathological and phylogenetic characterization of <i>Amphibiothecum</i> sp. infection in an isolated amphibian (<i>Lissotriton helveticus</i>) population on the island of Rum (Scotland). Parasitology, 2017, 144, 484-496.	1.5	8
35	A quantitative-PCR based method to estimate ranavirus viral load following normalisation by reference to an ultraconserved vertebrate target. Journal of Virological Methods, 2017, 249, 147-155.	2.1	43
36	From fish to frogs and beyond: Impact and host range of emergent ranaviruses. Virology, 2017, 511, 272-279.	2.4	69

#	Article	IF	CITATIONS
37	Infections on the move: how transient phases of host movement influence disease spread. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171807.	2.6	45
38	Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150454.	4.0	52
39	Reconstructing the emergence of a lethal infectious disease of wildlife supports a key role for spread through translocations by humans. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160952.	2.6	74
40	Assessing the ability of swab data to determine the true burden of infection for the amphibian pathogen Batrachochytrium dendrobatidis. EcoHealth, 2016, 13, 360-367.	2.0	23
41	Invasive North American bullfrogs transmit lethal fungus Batrachochytrium dendrobatidis infections to native amphibian host species. Biological Invasions, 2016, 18, 2299-2308.	2.4	35
42	Mitigating amphibian chytridiomycoses in nature. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160207.	4.0	125
43	Detection of Batrachochytrium dendrobatidis in Amphibians Imported into the UK for the Pet Trade. EcoHealth, 2016, 13, 456-466.	2.0	17
44	Host species vary in infection probability, sub-lethal effects and costs of immune response when exposed to an amphibian parasite. Scientific Reports, 2015, 5, 10828.	3.3	47
45	A de novo Assembly of the Common Frog (Rana temporaria) Transcriptome and Comparison of Transcription Following Exposure to Ranavirus and Batrachochytrium dendrobatidis. PLoS ONE, 2015, 10, e0130500.	2.5	32
46	Amphibian Symbiotic Bacteria Do Not Show a Universal Ability To Inhibit Growth of the Global Panzootic Lineage of Batrachochytrium dendrobatidis. Applied and Environmental Microbiology, 2015, 81, 3706-3711.	3.1	60
47	Successful elimination of a lethal wildlife infectious disease in nature. Biology Letters, 2015, 11, 20150874.	2.3	135
48	Environmentally determined juvenile growth rates dictate the degree of sexual size dimorphism in the Sardinian brook newt. Evolutionary Ecology, 2015, 29, 169-184.	1.2	5
49	Delayed metamorphosis of amphibian larvae facilitates Batrachochytrium dendrobatidis transmission and persistence. Diseases of Aquatic Organisms, 2015, 117, 85-92.	1.0	23
50	Experimental evidence in support of single host maintenance of a multihost pathogen. Ecosphere, 2014, 5, art142.	2.2	13
51	Collapse of Amphibian Communities Due to an Introduced Ranavirus. Current Biology, 2014, 24, 2586-2591.	3.9	182
52	Assessing Risk and Guidance on Monitoring of <i>Batrachochytrium dendrobatidis</i> in Europe through Identification of Taxonomic Selectivity of Infection. Conservation Biology, 2014, 28, 213-223.	4.7	46
53	Environmental Determinants of Recent Endemism of <i>Batrachochytrium dendrobatidis</i> Infections in Amphibian Assemblages in the Absence of Disease Outbreaks. Conservation Biology, 2014, 28, 1302-1311.	4.7	43
54	Microscopic Aquatic Predators Strongly Affect Infection Dynamics of a Globally Emerged Pathogen. Current Biology, 2014, 24, 176-180.	3.9	117

#	Article	IF	CITATIONS
55	Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science, 2014, 346, 630-631.	12.6	421
56	Body size, nuptial pad size and hormone levels: potential non-destructive biomarkers of reproductive health in wild toads (Bufo bufo). Ecotoxicology, 2014, 23, 1359-1365.	2.4	16
57	Challenges and opportunities for animal conservation from renewable energy development. Animal Conservation, 2013, 16, 367-369.	2.9	19
58	The pandemic pathogen of amphibians, <i>Batrachochytrium dendrobatidis</i> (Phylum) Tj ETQq0 0 0 rgBT /Over	rlock 10 Tf 0.6	50 622 Td (C
59	Contextâ€dependent amphibian host population response to an invading pathogen. Ecology, 2013, 94, 1795-1804.	3.2	64
60	Evidence for the Introduction of Lethal Chytridiomycosis Affecting Wild Betic Midwife Toads (Alytes) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
61	Geographic and taxonomic variation in <i><scp>B</scp>atrachochytrium dendrobatidis</i> infection and transmission within a highly endemic amphibian community. Diversity and Distributions, 2013, 19, 1153-1163.	4.1	10
62	Effects of Oilâ€Palm Plantations on Diversity of Tropical Anurans. Conservation Biology, 2013, 27, 615-624.	4.7	54
63	Batrachochytrium dendrobatidis Infection and Lethal Chytridiomycosis in Caecilian Amphibians (Gymnophiona). EcoHealth, 2013, 10, 173-183.	2.0	54
64	Chromosomal Copy Number Variation, Selection and Uneven Rates of Recombination Reveal Cryptic Genome Diversity Linked to Pathogenicity. PLoS Genetics, 2013, 9, e1003703.	3.5	104
65	Genetic attributes of midwife toad (<i>Alytes obstetricans</i>) populations do not correlate with degree of species decline. Ecology and Evolution, 2013, 3, 2806-2819.	1.9	13
66	Mapping the Global Emergence of Batrachochytrium dendrobatidis, the Amphibian Chytrid Fungus. PLoS ONE, 2013, 8, e56802.	2.5	314
67	Resistance to Chytridiomycosis in European Plethodontid Salamanders of the Genus Speleomantes. PLoS ONE, 2013, 8, e63639.	2.5	19
68	Global and endemic Asian lineages of the emerging pathogenic fungus <i>Batrachochytrium dendrobatidis</i> widely infect amphibians in China. Diversity and Distributions, 2012, 18, 307-318.	4.1	65
69	GENETIC EROSION IN WILD POPULATIONS MAKES RESISTANCE TO A PATHOGEN MORE COSTLY. Evolution; International Journal of Organic Evolution, 2012, 66, 1942-1952.	2.3	48
70	Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18732-18736.	7.1	375
71	The need for jumpstarting amphibian genome projects. Trends in Ecology and Evolution, 2011, 26, 378-379.	8.7	9
72	Climate change, chytridiomycosis or condition: an experimental test of amphibian survival. Global Change Biology, 2011, 17, 667-675.	9.5	65

#	Article	IF	CITATIONS
73	Rapid selection against inbreeding in a wild population of a rare frog. Evolutionary Applications, 2011, 4, 30-38.	3.1	18
74	Developing a safe antifungal treatment protocol to eliminateBatrachochytrium dendrobatidisfrom amphibians. Medical Mycology, 2011, 49, 143-149.	0.7	66
75	First Evidence of Batrachochytrium dendrobatidis in China: Discovery of Chytridiomycosis in Introduced American Bullfrogs and Native Amphibians in the Yunnan Province, China. EcoHealth, 2010, 7, 127-134.	2.0	45
76	Polygyny, census and effective population size in the threatened frog, <i>Rana latastei</i> . Animal Conservation, 2010, 13, 82-89.	2.9	40
77	Assessing the longâ€ŧerm impact of <i>Ranavirus</i> infection in wild common frog populations. Animal Conservation, 2010, 13, 514-522.	2.9	122
78	Effects of Two Amphibian Pathogens on the Developmental Stability of Green Frogs. Conservation Biology, 2010, 24, 788-794.	4.7	19
79	Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia. Ecology Letters, 2010, 13, 372-382.	6.4	162
80	Dermocystid infection and associated skin lesions in free-living palmate newts (Lissotriton) Tj ETQq0 0 0 rgBT /C	verlock 10 1.3) Tf 50 462 To
81	Expression Profiling the Temperature-Dependent Amphibian Response to Infection by Batrachochytrium dendrobatidis. PLoS ONE, 2009, 4, e8408.	2.5	135
82	Fatal Chytridiomycosis in the Tyrrhenian Painted Frog. EcoHealth, 2009, 6, 27-32.	2.0	24
83	The Amphibian Trade: Bans or Best Practice?. EcoHealth, 2009, 6, 148-151.	2.0	35
84	Determining Causality and Controlling Disease is Based on Collaborative Research involving Multidisciplinary Approaches. EcoHealth, 2009, 6, 331-334.	2.0	8
85	Evidence for gene flow differs from observed dispersal patterns in the Humboldt penguin, Spheniscus humboldti. Conservation Genetics, 2009, 10, 839-849.	1.5	29
86	Characterization of microsatellite loci in two closely related Lissotriton newt species. Conservation Genetics, 2009, 10, 1903-1906.	1.5	8
87	Proteomic and phenotypic profiling of the amphibian pathogen <i>Batrachochytrium dendrobatidis</i> shows that genotype is linked to virulence. Molecular Ecology, 2009, 18, 415-429.	3.9	138
88	Population genetic patterns suggest a behavioural change in wild common frogs (<i>Rana) Tj ETQq0 0 0 rgBT /C</i>)verlock 10) Tf 50 142 T

89	European phylogeography of the common frog (Rana temporaria): routes of postglacial colonization into the British Isles, and evidence for an Irish glacial refugium. Heredity, 2009, 102, 490-496.	2.6	54
90	Life history tradeoffs influence mortality associated with the amphibian pathogen <i>Batrachochytrium dendrobatidis</i> . Oikos, 2009, 118, 783-791.	2.7	194

#	Article	IF	CITATIONS
91	Global Emergence of <i>Batrachochytrium dendrobatidis</i> and Amphibian Chytridiomycosis in Space, Time, and Host. Annual Review of Microbiology, 2009, 63, 291-310.	7.3	564
92	Global Amphibian Extinction Risk Assessment for the Panzootic Chytrid Fungus. Diversity, 2009, 1, 52-66.	1.7	141
93	Evidence for Directional Selection at a Novel Major Histocompatibility Class I Marker in Wild Common Frogs (Rana temporaria) Exposed to a Viral Pathogen (Ranavirus). PLoS ONE, 2009, 4, e4616.	2.5	86
94	Using itraconazole to clear Batrachochytrium dendrobatidis infection, and subsequent depigmentation of Alytes muletensis tadpoles. Diseases of Aquatic Organisms, 2009, 83, 257-260.	1.0	83
95	Human Disturbance Influences Behaviour and Local Density of Juvenile Frogs. Ethology, 2008, 114, 1006-1013.	1.1	3
96	Molecular and quantitative genetic differentiation across Europe in yellow dung flies. Journal of Evolutionary Biology, 2008, 21, 1492-1503.	1.7	35
97	Persistence of the emerging pathogen <i>Batrachochytrium dendrobatidis</i> outside the amphibian host greatly increases the probability of host extinction. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 329-334.	2.6	91
98	Predicting susceptibility to future declines in the world's frogs. Conservation Letters, 2008, 1, 82-90.	5.7	149
99	Detection of Chytridiomycosis Caused by Batrachochytrium dendrobatidis in the Endangered Sardinian Newt (Euproctus platycephalus) in Southern Sardinia, Italy. Journal of Wildlife Diseases, 2008, 44, 712-715.	0.8	31
100	Anthropogenic Influence on Prevalence of 2 Amphibian Pathogens. Emerging Infectious Diseases, 2008, 14, 1175-1176.	4.3	33
101	No evidence for precipitous declines of harlequin frogs (Atelopus) in the Guyanas. Studies on Neotropical Fauna and Environment, 2008, 43, 177-180.	1.0	9
102	Mountain chickens Leptodactylus fallax and sympatric amphibians appear to be disease free on Montserrat. Oryx, 2007, 41, 398-401.	1.0	11
103	The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal Biology Reviews, 2007, 21, 2-9.	4.7	193
104	Female alpine newts (Triturus alpestris) mate initially with males signalling fertility benefits. Biological Journal of the Linnean Society, 2007, 91, 483-491.	1.6	8
105	Genetic diversity, but not hatching success, is jointly affected by postglacial colonization and isolation in the threatened frog, Rana latastei. Molecular Ecology, 2007, 16, 1787-1797.	3.9	64
106	Environmental detection of Batrachochytrium dendrobatidis in a temperate climate. Diseases of Aquatic Organisms, 2007, 77, 105-112.	1.0	78
107	The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biology Letters, 2006, 2, 455-459.	2.3	265
108	Tests of aggregative preferences of wandering salamanders (Aneides vagrans). Acta Ethologica, 2006, 9, 43-47.	0.9	1

#	Article	IF	CITATIONS
109	Susceptibility of Italian agile frog populations to an emerging strain of Ranavirus parallels population genetic diversity. Ecology Letters, 2005, 8, 401-408.	6.4	154
110	Chytrid Fungus in Europe. Emerging Infectious Diseases, 2005, 11, 1639-1641.	4.3	101
111	Emergence of amphibian chytridiomycosis in Britain. Veterinary Record, 2005, 157, 386-387.	0.3	37
112	Multiple paternity in the western terrestrial garter snake, Thamnophis elegans. Canadian Journal of Zoology, 2005, 83, 656-663.	1.0	17
113	RESPONSE OF THE ITALIAN AGILE FROG (RANA LATASTEI) TO A RANAVIRUS, FROG VIRUS 3: A MODEL FOR VIRAL EMERGENCE IN NAÃVE POPULATIONS. Journal of Wildlife Diseases, 2004, 40, 660-669.	0.8	68
114	Genetic diversity across a vertebrate species' range: a test of the central-peripheral hypothesis. Molecular Ecology, 2004, 13, 1047-1053.	3.9	108
115	Microsatellite markers developed from Thamnophis elegans and Thamnophis sirtalis and their utility in three species of garter snakes. Molecular Ecology Notes, 2004, 4, 369-371.	1.7	14
116	Characterization of microsatellite loci in Humboldt penguin (Spheniscus humboldti) and cross-amplification in other penguin species. Molecular Ecology Notes, 2003, 3, 62-64.	1.7	18
117	Di- and tetranucleotide microsatellite markers for the Alpine newt (Triturus alpestris): characterization and cross-priming in five congeners. Molecular Ecology Notes, 2003, 3, 186-188.	1.7	18
118	Genetic depletion in Swiss populations of Rana latastei: conservation implications. Biological Conservation, 2003, 114, 371-376.	4.1	21
119	Superior sperm competitors sire higher–quality young. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1933-1938.	2.6	117
120	Relatedness, body size and paternity in the alpine newt,Triturus alpestris. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 619-624.	2.6	89
121	Heteropopulation males have a fertilization advantage during sperm competition in the yellow dung fly (Scathophaga stercoraria). Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1701-1707.	2.6	53
122	Geographic Variation of Multiple Paternity in the Common Garter Snake (Thamnophis sirtalis). Copeia, 2002, 2002, 15-23.	1.3	43
123	Genome size and microsatellites: the effect of nuclear size on amplification potential. Genome, 2002, 45, 212-215.	2.0	75
124	Polymorphic markers for the sea cucumber Parastichopus californicus. Molecular Ecology Notes, 2002, 2, 233-235.	1.7	7
125	Title is missing!. Conservation Genetics, 2002, 3, 455-458.	1.5	7
126	Microsatellites for use in studies of the Italian Agile Frog, Rana latastei (Boulenger). Conservation Genetics, 2001, 2, 77-80.	1.5	17

#	Article	IF	CITATIONS
127	Sexual conflict selects for male and female reproductive characters. Current Biology, 2001, 11, 489-493.	3.9	247
128	A set of CA repeat microsatellite markers derived from the pool frog, <i>Rana lessonae</i> . Molecular Ecology, 2000, 9, 2173-2175.	3.9	55
129	Polymorphic DNA microsatellites identified in the yellow dung fly (Scathophaga stercoraria). Molecular Ecology, 2000, 9, 2207-2209.	3.9	23