## Javier Pozueta-Romero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2555411/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF              | CITATIONS     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| 1  | Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiology Reviews, 2010, 34, 952-985.                                                                                                                                                     | 8.6             | 340           |
| 2  | Starch Granule Initiation in <i>Arabidopsis</i> Requires the Presence of Either Class IV or Class III<br>Starch Synthases. Plant Cell, 2009, 21, 2443-2457.                                                                                                | 6.6             | 217           |
| 3  | Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields.<br>Biotechnology Advances, 2014, 32, 87-106.                                                                                                                   | 11.7            | 211           |
| 4  | Enhancing Sucrose Synthase Activity in Transgenic Potato (Solanum tuberosum L.) Tubers Results in<br>Increased Levels of Starch, ADPglucose and UDPglucose and Total Yield. Plant and Cell Physiology,<br>2009, 50, 1651-1662.                             | 3.1             | 186           |
| 5  | Sucrose synthase activity in the <i>sus1/sus2/sus3/sus4 Arabidopsis</i> mutant is sufficient to support<br>normal cellulose and starch production. Proceedings of the National Academy of Sciences of the<br>United States of America, 2012, 109, 321-326. | 7.1             | 183           |
| 6  | Effect of anoxia on starch breakdown in rice and wheat seeds. Planta, 1992, 188, 611-8.                                                                                                                                                                    | 3.2             | 168           |
| 7  | Rice Plastidial N-Glycosylated Nucleotide Pyrophosphatase/Phosphodiesterase Is Transported from the ER-Golgi to the Chloroplast through the Secretory Pathway. Plant Cell, 2006, 18, 2582-2592.                                                            | 6.6             | 150           |
| 8  | Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Deficiency Leads to Altered Root Development<br>and Affects the Sugar and Amino Acid Balance in Arabidopsis Â. Plant Physiology, 2009, 151, 541-558.                                                   | 4.8             | 147           |
| 9  | Fluid Phase Endocytic Uptake of Artificial Nano-Spheres and Fluorescent Quantum Dots by Sycamore<br>Cultured Cells. Plant Signaling and Behavior, 2006, 1, 196-200.                                                                                        | 2.4             | 143           |
| 10 | Sucrose Synthase Catalyzes the de novo Production of ADPglucose Linked to Starch Biosynthesis in<br>Heterotrophic Tissues of Plants. Plant and Cell Physiology, 2003, 44, 500-509.                                                                         | 3.1             | 124           |
| 11 | Enhancing Sucrose Synthase Activity Results in Increased Levels of Starch and ADP-Glucose in Maize<br>(Zea mays L.) Seed Endosperms. Plant and Cell Physiology, 2013, 54, 282-294.                                                                         | 3.1             | 119           |
| 12 | A Ubiquitous Plant Housekeeping Gene, PAP, Encodes a Major Protein Component of Bell Pepper<br>Chromoplasts. Plant Physiology, 1997, 115, 1185-1194.                                                                                                       | 4.8             | 104           |
| 13 | Glycogen Phosphorylase, the Product of the glgP Gene, Catalyzes Glycogen Breakdown by Removing<br>Glucose Units from the Nonreducing Ends in Escherichia coli. Journal of Bacteriology, 2006, 188,<br>5266-5272.                                           | 2.2             | 103           |
| 14 | Direct transport of ADPglucose by an adenylate translocator is linked to starch biosynthesis in<br>amyloplasts Proceedings of the National Academy of Sciences of the United States of America, 1991,<br>88, 5769-5773.                                    | 7.1             | 96            |
| 15 | Sucrose Synthase Controls Both Intracellular ADP Glucose Levels and Transitory Starch Biosynthesis<br>in Source Leaves. Plant and Cell Physiology, 2005, 46, 1366-1376.                                                                                    | 3.1             | 95            |
| 16 | Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action. Plant, Cell and Environment, 2016, 39, 2592-2608.                                                                        | 5.7             | 93            |
| 17 | Fruit-Specific Expression of a Defensin-Type Gene Family in Bell Pepper (Upregulation during Ripening) Tj ETQq1                                                                                                                                            | 0,784314<br>4.8 | 4 rgBT /Overl |
| 18 | Microbial Volatile Emissions Promote Accumulation of Exceptionally High Levels of Starch in Leaves in Mono- and Dicotyledonous Plants. Plant and Cell Physiology, 2010, 51, 1674-1693.                                                                     | 3.1             | 83            |

| #  | Article                                                                                                                                                                                                                                                                                                                                 | IF               | CITATIONS   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 19 | Sucrose-inducible Endocytosis as a Mechanism for Nutrient Uptake in Heterotrophic Plant Cells. Plant and Cell Physiology, 2005, 46, 474-481.                                                                                                                                                                                            | 3.1              | 79          |
| 20 | Most of ADP{middle dot}glucose linked to starch biosynthesis occurs outside the chloroplast in<br>source leaves. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13080-13085.                                                                                                               | 7.1              | 71          |
| 21 | Adenosine diphosphate glucose pyrophosphatase: A plastidial phosphodiesterase that prevents starch<br>biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2000,<br>97, 8705-8710.                                                                                                            | 7.1              | 70          |
| 22 | Genome-wide screening of genes affecting glycogen metabolism inEscherichia coliK-12. FEBS Letters, 2007, 581, 2947-2953.                                                                                                                                                                                                                | 2.8              | 66          |
| 23 | Two isoforms of a nucleotide-sugar pyrophosphatase/phosphodiesterase from barley leaves (Hordeum) Tj ETQq1                                                                                                                                                                                                                              | 1 0.78431<br>2.8 | 4 rgBT /Ove |
| 24 | ADP-Glucose Transport by the Chloroplast Adenylate Translocator Is Linked to Starch Biosynthesis.<br>Plant Physiology, 1991, 97, 1565-1572.                                                                                                                                                                                             | 4.8              | 61          |
| 25 | Arabidopsis Responds to <i>Alternaria alternata</i> Volatiles by Triggering Plastid Phosphoglucose<br>Isomerase-Independent Mechanisms. Plant Physiology, 2016, 172, 1989-2001.                                                                                                                                                         | 4.8              | 58          |
| 26 | Enzyme Sets of Glycolysis, Gluconeogenesis, and Oxidative Pentose Phosphate Pathway Are Not<br>Complete in Nongreen Highly Purified Amyloplasts of Sycamore (Acer pseudoplatanus L.) Cell<br>Suspension Cultures. Plant Physiology, 1990, 94, 538-544.                                                                                  | 4.8              | 55          |
| 27 | Enhancing the expression of starch synthase class IV results in increased levels of both transitory and longâ€ŧerm storage starch. Plant Biotechnology Journal, 2011, 9, 1049-1060.                                                                                                                                                     | 8.3              | 54          |
| 28 | Arabidopsis thaliana Mutants Lacking ADP-Glucose Pyrophosphorylase Accumulate Starch and<br>Wild-type ADP-Glucose Content: Further Evidence for the Occurrence of Important Sources, other<br>than ADP-Glucose Pyrophosphorylase, of ADP-Glucose Linked to Leaf Starch Biosynthesis. Plant and<br>Cell Physiology, 2011, 52, 1162-1176. | 3.1              | 54          |
| 29 | Characterization of a family of genes encoding a fruit-specific wound-stimulated protein of bell pepper (Capsicum annuum): identification of a new family of transposable elements. Plant Molecular Biology, 1995, 28, 1011-1025.                                                                                                       | 3.9              | 53          |
| 30 | Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli.<br>Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8128-8132.                                                                                                                                | 7.1              | 53          |
| 31 | Existence of two parallel mechanisms for glucose uptake in heterotrophic plant cells. Journal of<br>Experimental Botany, 2005, 56, 1905-1912.                                                                                                                                                                                           | 4.8              | 53          |
| 32 | Escherichia coliAspP activity is enhanced by macromolecular crowding and by both glucose-1,6-bisphosphate and nucleotide-sugars. FEBS Letters, 2007, 581, 1035-1040.                                                                                                                                                                    | 2.8              | 53          |
| 33 | Evidence for two endocytic transport pathways in plant cells. Plant Science, 2009, 177, 341-348.                                                                                                                                                                                                                                        | 3.6              | 50          |
| 34 | Title is missing!. Plant Cell, Tissue and Organ Culture, 2001, 67, 173-180.                                                                                                                                                                                                                                                             | 2.3              | 47          |
| 35 | Dual Targeting to Mitochondria and Plastids of AtBT1 and ZmBT1, Two Members of the Mitochondrial<br>Carrier Family. Plant and Cell Physiology, 2011, 52, 597-609.                                                                                                                                                                       | 3.1              | 46          |
| 36 | <i>Escherichia coli</i> glycogen genes are organized in a single <i>glgBXCAP</i> transcriptional unit<br>possessing an alternative suboperonic promoter within <i>glgC</i> that directs <i>glgAP</i>                                                                                                                                    | 3.7              | 44          |

| #  | Article                                                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | In and out of the plant storage vacuole. Plant Science, 2012, 190, 52-61.                                                                                                                                                                                                                                                                      | 3.6 | 44        |
| 38 | <i>Escherichia coli</i> glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly interconnected with a wide variety of cellular processes. Biochemical Journal, 2009, 424, 129-141.                                                                              | 3.7 | 43        |
| 39 | Reappraisal of the Currently Prevailing Model of Starch Biosynthesis in Photosynthetic Tissues: A<br>Proposal Involving the Cytosolic Production of ADP-Glucose by Sucrose Synthase and Occurrence of<br>Cyclic Turnover of Starch in the Chloroplast. Plant and Cell Physiology, 2001, 42, 1311-1320.                                         | 3.1 | 42        |
| 40 | Genome-Wide Screening of Genes Whose Enhanced Expression Affects Glycogen Accumulation in<br>Escherichia coli. DNA Research, 2010, 17, 61-71.                                                                                                                                                                                                  | 3.4 | 41        |
| 41 | Microbial Volatile-Induced Accumulation of Exceptionally High Levels of Starch in Arabidopsis Leaves<br>Is a Process Involving NTRC and Starch Synthase Classes III and IV. Molecular Plant-Microbe<br>Interactions, 2011, 24, 1165-1178.                                                                                                      | 2.6 | 40        |
| 42 | Characterization of multiple SPS knockout mutants reveals redundant functions of the four<br>Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that<br>enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose<br>biosynthesis. Plant Science, 2015, 238, 135-147. | 3.6 | 39        |
| 43 | Post-Translational Redox Modification of ADP-Glucose Pyrophosphorylase in Response to Light is Not<br>a Major Determinant of Fine Regulation of Transitory Starch Accumulation in Arabidopsis Leaves.<br>Plant and Cell Physiology, 2012, 53, 433-444.                                                                                         | 3.1 | 38        |
| 44 | Sucrose Transport into Citrus Juice Cells: Evidence for an Endocytic Transport System. Journal of the<br>American Society for Horticultural Science, 2005, 130, 269-274.                                                                                                                                                                       | 1.0 | 37        |
| 45 | No need to shift the paradigm on the metabolic pathway to transitory starch in leaves. Trends in Plant<br>Science, 2005, 10, 154-156.                                                                                                                                                                                                          | 8.8 | 35        |
| 46 | Cloning, Expression and Characterization of a Nudix Hydrolase that Catalyzes the Hydrolytic<br>Breakdown of ADP-glucose Linked to Starch Biosynthesis in Arabidopsis thaliana. Plant and Cell<br>Physiology, 2006, 47, 926-934.                                                                                                                | 3.1 | 35        |
| 47 | Volatile compounds other than CO <sub>2</sub> emitted by different microorganisms promote<br>distinct posttranscriptionally regulated responses in plants. Plant, Cell and Environment, 2019, 42,<br>1729-1746.                                                                                                                                | 5.7 | 35        |
| 48 | Occurrence of more than one important source of ADPglucose linked to glycogen biosynthesis in <i>Escherichia coli</i> and <i>Salmonella</i> . FEBS Letters, 2007, 581, 4423-4429.                                                                                                                                                              | 2.8 | 32        |
| 49 | An <i>Escherichia coli</i> mutant producing a truncated inactive form of GlgC synthesizes glycogen:<br>Further evidences for the occurrence of various important sources of ADPglucose in enterobacteria.<br>FEBS Letters, 2007, 581, 4417-4422.                                                                                               | 2.8 | 30        |
| 50 | Plastidic Phosphoglucose Isomerase Is an Important Determinant of Starch Accumulation in<br>Mesophyll Cells, Growth, Photosynthetic Capacity, and Biosynthesis of Plastidic Cytokinins in<br>Arabidopsis. PLoS ONE, 2015, 10, e0119641.                                                                                                        | 2.5 | 30        |
| 51 | New enzymes, new pathways and an alternative view on starch biosynthesis in both photosynthetic and heterotrophic tissues of plants. Biocatalysis and Biotransformation, 2006, 24, 63-76.                                                                                                                                                      | 2.0 | 29        |
| 52 | An Important Pool of Sucrose Linked to Starch Biosynthesis is Taken up by Endocytosis in<br>Heterotrophic Cells. Plant and Cell Physiology, 2006, 47, 447-456.                                                                                                                                                                                 | 3.1 | 29        |
| 53 | Specific delivery of AtBT1 to mitochondria complements the aberrant growth and sterility phenotype of homozygous <i>Atbt1</i> Arabidopsis mutants. Plant Journal, 2011, 68, 1115-1121.                                                                                                                                                         | 5.7 | 29        |
| 54 | Nonautonomous inverted repeat Alien transposable elements are associated with genes of both monocotyledonous and dicotyledonous plants. Gene, 1996, 171, 147-153.                                                                                                                                                                              | 2.2 | 28        |

| #  | Article                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | GlgS, described previously as a glycogen synthesis control protein, negatively regulates motility and biofilm formation in <i>Escherichia coli</i> . Biochemical Journal, 2013, 452, 559-573.                                                                                                             | 3.7 | 28        |
| 56 | Cloning, expression and characterization of a mammalian Nudix hydrolase-like enzyme that cleaves the pyrophosphate bond of UDP-glucose. Biochemical Journal, 2003, 370, 409-415.                                                                                                                          | 3.7 | 26        |
| 57 | Plant responses to fungal volatiles involve global posttranslational thiol redox proteome changes that affect photosynthesis. Plant, Cell and Environment, 2019, 42, 2627-2644.                                                                                                                           | 5.7 | 26        |
| 58 | Comparative Genomic and Phylogenetic Analyses of Gammaproteobacterial glg Genes Traced the Origin<br>of the Escherichia coli Glycogen glgBXCAP Operon to the Last Common Ancestor of the Sister Orders<br>Enterobacteriales and Pasteurellales. PLoS ONE, 2015, 10, e0115516.                             | 2.5 | 23        |
| 59 | A sensitive method for confocal fluorescence microscopic visualization of starch granules in iodine stained samples. Plant Signaling and Behavior, 2012, 7, 1146-1150.                                                                                                                                    | 2.4 | 22        |
| 60 | HPLC-MS/MS Analyses Show That the Near-Starchless aps1 and pgm Leaves Accumulate Wild Type Levels of ADPglucose: Further Evidence for the Occurrence of Important ADPglucose Biosynthetic Pathway(s) Alternative to the pPGI-pPGM-AGP Pathway. PLoS ONE, 2014, 9, e104997.                                | 2.5 | 22        |
| 61 | <i>N</i> -Glycomic and Microscopic Subcellular Localization Analyses of NPP1, 2 and 6 Strongly<br>Indicate that <i>trans</i> -Golgi Compartments Participate in the Golgi to Plastid Traffic of Nucleotide<br>Pyrophosphatase/Phosphodiesterases in Rice. Plant and Cell Physiology, 2016, 57, 1610-1628. | 3.1 | 21        |
| 62 | Systematic Production of Inactivating and Non-Inactivating Suppressor Mutations at the relA Locus<br>That Compensate the Detrimental Effects of Complete spoT Loss and Affect Glycogen Content in<br>Escherichia coli. PLoS ONE, 2014, 9, e106938.                                                        | 2.5 | 21        |
| 63 | A cAMP/CRP-controlled mechanism for the incorporation of extracellular ADP-glucose in Escherichia coli involving NupC and NupG nucleoside transporters. Scientific Reports, 2018, 8, 15509.                                                                                                               | 3.3 | 20        |
| 64 | Genetic and isotope ratio mass spectrometric evidence for the occurrence of starch degradation and cycling in illuminated Arabidopsis leaves. PLoS ONE, 2017, 12, e0171245.                                                                                                                               | 2.5 | 19        |
| 65 | Volatiles from the fungal phytopathogen <i>Penicillium aurantiogriseum</i> modulate root<br>metabolism and architecture through proteome resetting. Plant, Cell and Environment, 2020, 43,<br>2551-2570.                                                                                                  | 5.7 | 19        |
| 66 | ADPG formation by the ADP-specific cleavage of sucrose-reassessment of sucrose synthase. FEBS Letters, 1991, 291, 233-237.                                                                                                                                                                                | 2.8 | 18        |
| 67 | Nucleotide Pyrophosphatase/Phosphodiesterase 1 Exerts a Negative Effect on Starch Accumulation and Growth in Rice Seedlings under High Temperature and CO2 Concentration Conditions. Plant and Cell Physiology, 2014, 55, 320-332.                                                                        | 3.1 | 18        |
| 68 | Response to Neuhaus : No need to shift the paradigm on the metabolic pathway to transitory starch in<br>leaves. Trends in Plant Science, 2005, 10, 156-158.                                                                                                                                               | 8.8 | 16        |
| 69 | A chromoplast-specific protein in Capsicum annuum: characterization and expression of the corresponding gene. Current Genetics, 1994, 26, 524-527.                                                                                                                                                        | 1.7 | 15        |
| 70 | Sucrose-Starch Conversion in Heterotrophic Tissues of Plants. Critical Reviews in Plant Sciences, 1999, 18, 489-525.                                                                                                                                                                                      | 5.7 | 15        |
| 71 | Distinct isoforms of ADPglucose pyrophosphatase and ADPglucose pyrophosphorylase occur in the suspension-cultured cells of sycamore (Acer pseudoplatanus L.). FEBS Letters, 2000, 480, 277-282.                                                                                                           | 2.8 | 15        |
| 72 | Plastidial Phosphoglucose Isomerase Is an Important Determinant of Seed Yield through Its<br>Involvement in Gibberellin-Mediated Reproductive Development and Storage Reserve Biosynthesis in<br>Arabidopsis. Plant Cell, 2018, 30, 2082-2098.                                                            | 6.6 | 15        |

| #  | Article                                                                                                                                                                                                                                                      | IF                 | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| 73 | Action mechanisms of small microbial volatile compounds in plants. Journal of Experimental Botany, 2022, 73, 498-510.                                                                                                                                        | 4.8                | 15           |
| 74 | Sucrose-Starch Conversion in Heterotrophic Tissues of Plants. Critical Reviews in Plant Sciences, 1999, 18, 489-525.                                                                                                                                         | 5.7                | 14           |
| 75 | Identification of a short interspersed repetitive element in partially spliced transcripts of the bell<br>pepper (Capsicum annuum) PAP gene: new evolutionary and regulatory aspects on plant tRNA-related<br>SINEs. Gene, 1998, 214, 51-58.                 | 2.2                | 13           |
| 76 | Mannitolâ€enhanced, fluidâ€phase endocytosis in storage parenchyma cells of celery ( <i>Apium) Tj ETQq0 0 0 rg</i>                                                                                                                                           | gBT /Overlo<br>1.7 | ock 10 Tf 50 |
| 77 | Plastidial Localization of a Potato â€~Nudix' Hydrolase of ADP-glucose Linked to Starch Biosynthesis.<br>Plant and Cell Physiology, 2008, 49, 1734-1746.                                                                                                     | 3.1                | 13           |
| 78 | Unraveling the role of transient starch in the response of Arabidopsis to elevated CO2 under long-day conditions. Environmental and Experimental Botany, 2018, 155, 158-164.                                                                                 | 4.2                | 13           |
| 79 | Comparative analysis of mitochondrial and amyloplast adenylate translocators. FEBS Letters, 1991, 287, 62-66.                                                                                                                                                | 2.8                | 12           |
| 80 | Artifactual detection of ADP-dependent sucrose synthase in crude plant extracts. FEBS Letters, 1992, 309, 283-287.                                                                                                                                           | 2.8                | 12           |
| 81 | Proteomics Analysis Reveals Non-Controlled Activation of Photosynthesis and Protein Synthesis in a<br>Rice npp1 Mutant under High Temperature and Elevated CO2 Conditions. International Journal of<br>Molecular Sciences, 2018, 19, 2655.                   | 4.1                | 12           |
| 82 | Influence of crop load on the expression patterns of starch metabolism genes in alternate-bearing citrus trees. Plant Physiology and Biochemistry, 2014, 80, 105-113.                                                                                        | 5.8                | 11           |
| 83 | Reply to Smith et al.: No evidence to challenge the current paradigm on starch and cellulose<br>biosynthesis involving sucrose synthase activity. Proceedings of the National Academy of Sciences of<br>the United States of America, 2012, 109, .           | 7.1                | 10           |
| 84 | Activity of membrane-associated sucrose synthase is regulated by its phosphorylation status in cultured cells of sycamore (Acer pseudoplatanus). Physiologia Plantarum, 2004, 122, 275-280.                                                                  | 5.2                | 9            |
| 85 | Enhanced Yield of Pepper Plants Promoted by Soil Application of Volatiles From Cell-Free Fungal<br>Culture Filtrates Is Associated With Activation of the Beneficial Soil Microbiota. Frontiers in Plant<br>Science, 2021, 12, 752653.                       | 3.6                | 9            |
| 86 | CytoplasmicEscherichia coliADP sugar pyrophosphatase binds to cell membranes in response to extracellular signals as the cell population density increases. FEMS Microbiology Letters, 2008, 288, 25-32.                                                     | 1.8                | 8            |
| 87 | Mitochondrial Zea mays Brittle1-1 Is a Major Determinant of the Metabolic Fate of Incoming Sucrose<br>and Mitochondrial Function in Developing Maize Endosperms. Frontiers in Plant Science, 2019, 10, 242.                                                  | 3.6                | 8            |
| 88 | Fluid-phase endocytosis in <i>Citrus</i> juice cells is independent from vacuolar pH and inhibited by chlorpromazine, an inhibitor of PI-3 kinases and clathrin-mediated endocytosis. Journal of Horticultural Science and Biotechnology, 2007, 82, 900-907. | 1.9                | 7            |
| 89 | Proteostatic Regulation of MEP and Shikimate Pathways by Redox-Activated Photosynthesis Signaling in Plants Exposed to Small Fungal Volatiles. Frontiers in Plant Science, 2021, 12, 637976.                                                                 | 3.6                | 7            |
| 90 | A suggested model for potato MIVOISAP involving functions of central carbohydrate and amino acid<br>metabolism, as well as actin cytoskeleton and endocytosis. Plant Signaling and Behavior, 2010, 5,<br>1638-1641.                                          | 2.4                | 6            |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Fluid-Phase Endocytosis in Plant Cells. , 2012, , 107-122.                                                                                                                                                                                                 |     | 6         |
| 92 | Endocytic Uptake of Nutrients, Cell Wall Molecules and Fluidized Cell Wall Portions into Heterotrophic Plant Cells. , 0, , 19-35.                                                                                                                          |     | 5         |
| 93 | Filtering Centrifugation Through Two Layers of Silicone Oil: A Method for the Kinetic Analysis of<br>Rapid Metabolite Transport in Organelles Cell Structure and Function, 1991, 16, 357-363.                                                              | 1.1 | 5         |
| 94 | The Hyperbolic and Linear Phases of the Sucrose Accumulation Curve in Turnip Storage Cells Denote<br>Carrier-mediated and Fluid Phase Endocytic Transport, Respectively. Journal of the American Society<br>for Horticultural Science, 2008, 133, 612-618. | 1.0 | 5         |
| 95 | No evidence for the occurrence of substrate inhibition of <i>Arabidopsis thaliana</i> sucrose<br>synthase-1 (AtSUS1) by fructose and UDP-glucose. Plant Signaling and Behavior, 2012, 7, 799-802.                                                          | 2.4 | 4         |
| 96 | Architectural remodeling of the tonoplast during fluid-phase endocytosis. Plant Signaling and Behavior, 2013, 8, e24793.                                                                                                                                   | 2.4 | 4         |
| 97 | Distinct Profiles of ADP- and UDP-Specific Sucrose Synthases in Developing Rice Grains. Bioscience,<br>Biotechnology and Biochemistry, 1992, 56, 695-696.                                                                                                  | 1.3 | 3         |
| 98 | A Method for Accurate Analysis of Intermembrane Space in Organelles Enclosed by Double Envelope<br>Membranes Cell Structure and Function, 1992, 17, 47-53.                                                                                                 | 1.1 | 0         |