Ariel J Levine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2554990/publications.pdf Version: 2024-02-01

ADIEL LEVINE

#	Article	IF	CITATIONS
1	Intersectional genetic tools to study skilled reaching in mice. Experimental Neurology, 2022, 347, 113879.	4.1	5
2	Cell type prioritization in single-cell data. Nature Biotechnology, 2021, 39, 30-34.	17.5	96
3	Selecting single cell clustering parameter values using subsampling-based robustness metrics. BMC Bioinformatics, 2021, 22, 39.	2.6	45
4	A spinoparabrachial circuit defined by Tacr1 expression drives pain. ELife, 2021, 10, .	6.0	42
5	A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nature Communications, 2021, 12, 5722.	12.8	116
6	Confronting false discoveries in single-cell differential expression. Nature Communications, 2021, 12, 5692.	12.8	332
7	Cerebellospinal Neurons Regulate Motor Performance and Motor Learning. Cell Reports, 2020, 31, 107595.	6.4	47
8	Decoding cell type diversity within the spinal cord. Current Opinion in Physiology, 2019, 8, 1-6.	1.8	19
9	Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior. Cell Reports, 2018, 22, 2216-2225.	6.4	286
10	Graded Arrays of Spinal and Supraspinal V2a Interneuron Subtypes Underlie Forelimb and Hindlimb Motor Control. Neuron, 2018, 97, 869-884.e5.	8.1	152
11	Isolation of Adult Spinal Cord Nuclei for Massively Parallel Single-nucleus RNA Sequencing. Journal of Visualized Experiments, 2018, , .	0.3	33
12	Satb2 Is Required for the Development of a Spinal Exteroceptive Microcircuit that Modulates Limb Position. Neuron, 2016, 91, 763-776.	8.1	42
13	Biomaterial bridges enable regeneration and re-entry of corticospinal tract axons into the caudal spinal cord after SCI: Association with recovery of forelimb function. Biomaterials, 2015, 65, 1-12.	11.4	61
14	Identification of a cellular node for motor control pathways. Nature Neuroscience, 2014, 17, 586-593.	14.8	185
15	Spatial organization of cortical and spinal neurons controlling motor behavior. Current Opinion in Neurobiology, 2012, 22, 812-821.	4.2	68
16	GDF3 is a BMP inhibitor that can activate Nodal signaling only at very high doses. Developmental Biology, 2009, 325, 43-48.	2.0	35
17	The Molecular Basis of Pluripotency in Principles of Regenerative Medicine. , 2008, , 126-135.		0
18	Proposal of a model of mammalian neural induction. Developmental Biology, 2007, 308, 247-256.	2.0	170

ARIEL J LEVINE

#	Article	IF	CITATIONS
19	GDF3 at the Crossroads of TGF-beta Signaling. Cell Cycle, 2006, 5, 1069-1073.	2.6	47
20	CDF3, a BMP inhibitor, regulates cell fate in stem cells and early embryos. Development (Cambridge), 2006, 133, 209-216.	2.5	149
21	TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development (Cambridge), 2005, 132, 1273-1282.	2.5	778
22	Fluorescent labeling of endothelial cells allows in vivo, continuous characterization of the vascular development of Xenopus laevis. Developmental Biology, 2003, 254, 50-67.	2.0	46