
Wenping Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2554411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The current status, challenges, and future developments of new tuberculosis vaccines. Human Vaccines and Immunotherapeutics, 2018, 14, 1697-1716.	3.3	81
2	Will Mutations in the Spike Protein of SARS-CoV-2 Lead to the Failure of COVID-19 Vaccines?. Journal of Korean Medical Science, 2021, 36, e124.	2.5	64
3	Differential Diagnosis of Latent Tuberculosis Infection and Active Tuberculosis: A Key to a Successful Tuberculosis Control Strategy. Frontiers in Microbiology, 2021, 12, 745592.	3.5	60
4	Peptide-Based Vaccines for Tuberculosis. Frontiers in Immunology, 2022, 13, 830497.	4.8	37
5	Exploratory Study on Th1 Epitope-Induced Protective Immunity against Coxiella burnetii Infection. PLoS ONE, 2014, 9, e87206.	2.5	36
6	Peptides-Based Vaccine MP3RT Induced Protective Immunity Against Mycobacterium Tuberculosis Infection in a Humanized Mouse Model. Frontiers in Immunology, 2021, 12, 666290.	4.8	32
7	COVID-19 pandemic: SARS-CoV-2 specific vaccines and challenges, protection via BCG trained immunity, and clinical trials. Expert Review of Vaccines, 2021, 20, 857-880.	4.4	32
8	Proteome Analysis and Serological Characterization of Surface-Exposed Proteins of Rickettsia heilongjiangensis. PLoS ONE, 2013, 8, e70440.	2.5	31
9	Surface protein Adr2 of Rickettsia rickettsii induced protective immunity against Rocky Mountain spotted fever in C3H/HeN mice. Vaccine, 2014, 32, 2027-2033.	3.8	30
10	Tuberculosis vaccine BCG: the magical effect of the old vaccine in the fight against the COVID-19 pandemic. International Reviews of Immunology, 2022, 41, 283-296.	3.3	29
11	Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. BioMed Research International, 2020, 2020, 1-21.	1.9	28
12	<i>Rickettsia rickettsii</i> outer membrane protein YbgF induces protective immunity in C3H/HeN mice. Human Vaccines and Immunotherapeutics, 2015, 11, 642-649.	3.3	27
13	SARS-CoV-2 variants and COVID-19 vaccines: Current challenges and future strategies. International Reviews of Immunology, 2023, 42, 393-414.	3.3	26
14	Identification of Novel Surface-Exposed Proteins of Rickettsia rickettsii by Affinity Purification and Proteomics. PLoS ONE, 2014, 9, e100253.	2.5	24
15	Recombinant protein YbgF induces protective immunity against Rickettsia heilongjiangensis infection in C3H/HeN mice. Vaccine, 2013, 31, 5643-5650.	3.8	23
16	Enhanced protection against Rickettsia rickettsii infection in C3H/HeN mice by immunization with a combination of a recombinant adhesin rAdr2 and a protein fragment rOmpB-4 derived from outer membrane protein B. Vaccine, 2015, 33, 985-992.	3.8	23
17	Th1 epitope peptides induce protective immunity against Rickettsia rickettsii infection in C3H/HeN mice. Vaccine, 2017, 35, 7204-7212.	3.8	22
18	Macrophages enhance mesenchymal stem cell osteogenesis via down-regulation of reactive oxygen species. Journal of Dentistry, 2020, 94, 103297.	4.1	22

#	Article	IF	CITATIONS
19	In silico Analysis of Peptide-Based Biomarkers for the Diagnosis and Prevention of Latent Tuberculosis Infection. Frontiers in Microbiology, 0, 13, .	3.5	19

20 Serological characterization of surface-exposed proteins of Coxiella burnetii. Microbiology (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

21	The Research Progress in Immunotherapy of Tuberculosis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 763591.	3.9	16
22	BCG Vaccination: A potential tool against COVID-19 and COVID-19-like Black Swan incidents. International Immunopharmacology, 2022, 108, 108870.	3.8	15
23	Effects of Mycobacterium vaccae vaccine in a mouse model of tuberculosis: protective action and differentially expressed genes. Military Medical Research, 2020, 7, 25.	3.4	13
24	Is the tuberculosis vaccine BCG an alternative weapon for developing countries to defeat COVID-19?. Indian Journal of Tuberculosis, 2021, 68, 401-404.	0.7	13
25	A peptide-based vaccine ACP derived from antigens of Mycobacterium tuberculosis induced Th1 response but failed to enhance the protective efficacy of BCG in mice. Indian Journal of Tuberculosis, 2022, 69, 482-495.	0.7	13
26	Chloroform-Methanol Residue of Coxiella burnetii Markedly Potentiated the Specific Immunoprotection Elicited by a Recombinant Protein Fragment rOmpB-4 Derived from Outer Membrane Protein B of Rickettsia rickettsii in C3H/HeN Mice. PLoS ONE, 2015, 10, e0124664.	2.5	13
27	Protective immunity against Rickettsia heilongjiangensis in a C3H/HeN mouse model mediated by outer membrane protein B-pulsed dendritic cells. Science China Life Sciences, 2015, 58, 287-296.	4.9	11
28	Immunogenicity and Therapeutic Effects of Latency-Associated Genes in a Mycobacterium Tuberculosis Reactivation Mouse Model. Human Gene Therapy Methods, 2019, 30, 60-69.	2.1	11
29	Mannose-binding lectin 2 gene polymorphisms and their association with tuberculosis in a Chinese population. Infectious Diseases of Poverty, 2020, 9, 46.	3.7	11
30	Impact of Diabetes Mellitus on the Immunity of Tuberculosis Patients: A Retrospective, Cross-Sectional Study. Risk Management and Healthcare Policy, 2022, Volume 15, 611-627.	2.5	11
31	Advances in Key Drug Target Identification and New Drug Development for Tuberculosis. BioMed Research International, 2022, 2022, 1-23.	1.9	10
32	Cellular Immunity of Patients with Tuberculosis Combined with Diabetes. Journal of Immunology Research, 2022, 2022, 1-12.	2.2	9
33	The Natural Effect of BCG Vaccination on COVID-19: The Debate Continues. Frontiers in Immunology, 0, 13, .	4.8	9
34	Genomic and comparative genomic analyses of Rickettsia heilongjiangensis provide insight into its evolution and pathogenesis. Infection, Genetics and Evolution, 2014, 26, 274-282.	2.3	7
35	Enhanced Expression of T-Cell Immunoglobulin and Mucin Domain Protein 3 in Endothelial Cells Facilitates Intracellular Killing of <i>Rickettsia heilongjiangensis</i> . Journal of Infectious Diseases, 2016, 213, 71-79.	4.0	7
36	An alert of <i>Mycobacterium tuberculosis</i> infection of rhesus macaques in a wild zoo in China. Experimental Animals, 2017, 66, 357-365.	1.1	7

WENPING GONG

#	Article	IF	CITATIONS
37	Microarray of surface-exposed proteins of rickettsia heilongjiangensisfor serodiagnosis of Far-eastern spotted fever. BMC Infectious Diseases, 2014, 14, 332.	2.9	5
38	Chinese Traditional Medicine NiuBeiXiaoHe (NBXH) Extracts Have the Function of Antituberculosis and Immune Recovery in BALB/c Mice. Journal of Immunology Research, 2021, 2021, 1-20.	2.2	3
39	Child hepatitis of unknown origin may be due to insufficient understanding of adenovirus pathogenicity. Hepatology Communications, 2022, 6, 2988-2989.	4.3	3
40	Exploratory development of PCR-fluorescent probes in rapid detection of mutations associated with extensively drug-resistant tuberculosis. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 1851-1861.	2.9	2
41	Prediction and analyses of HLAâ€II restricted Mycobacterium tuberculosis CD4 + T cell epitopes in the Chinese population. Biotechnology and Applied Biochemistry, 2021, , .	3.1	2
42	Comparative study on the antituberculous effect and mechanism of the traditional Chinese medicines NiuBeiXiaoHe extract and JieHeWan. Military Medical Research, 2021, 8, 34.	3.4	2
43	Dynamic Changes in Chest CT Images Over 167 Days in 11 Patients with COVID-19: A Case Series and Literature Review. Zoonoses, 2021, 1, .	1.1	2
44	Clinical Efficacy of a Combination of Thymopentin and Antituberculosis Drugs in Treating Drug-Resistant Pulmonary Tuberculosis: Meta Analysis. Therapeutics and Clinical Risk Management, 2022, Volume 18, 287-298.	2.0	1
45	Verapamil Regulates the Macrophage Immunity to <i>Mycobacterium tuberculosis<∕i> through NF-κB Signaling. Current Molecular Medicine, 2023, 23, 536-549.</i>	1.3	0