
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2553498/publications.pdf Version: 2024-02-01

HMIIT A CHIDRAN

#	Article	IF	CITATIONS
1	Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nature Materials, 2016, 15, 621-627.	27.5	609
2	The Mechanical Environment of Bone Marrow: A Review. Annals of Biomedical Engineering, 2008, 36, 1978-1991.	2.5	254
3	An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles. Biomaterials, 2008, 29, 3278-3288.	11.4	224
4	Threeâ€Ðimensional Magnetic Assembly of Microscale Hydrogels. Advanced Materials, 2011, 23, 4254-4260.	21.0	213
5	Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1974-83.	7.1	184
6	Nanoplasmonic Quantitative Detection of Intact Viruses from Unprocessed Whole Blood. ACS Nano, 2013, 7, 4733-4745.	14.6	158
7	Engineering Anisotropic Biomimetic Fibrocartilage Microenvironment by Bioprinting Mesenchymal Stem Cells in Nanoliter Gel Droplets. Molecular Pharmaceutics, 2014, 11, 2151-2159.	4.6	155
8	Paper and Flexible Substrates as Materials for Biosensing Platforms to Detect Multiple Biotargets. Scientific Reports, 2015, 5, 8719.	3.3	148
9	The assembly of cell-encapsulating microscale hydrogels using acoustic waves. Biomaterials, 2011, 32, 7847-7855.	11.4	123
10	Factor XII and uPAR upregulate neutrophil functions to influence wound healing. Journal of Clinical Investigation, 2018, 128, 944-959.	8.2	103
11	Manipulating biological agents and cells in micro-scale volumes for applications in medicine. Chemical Society Reviews, 2013, 42, 5788.	38.1	100
12	Heterogeneous Red Blood Cell Adhesion and Deformability in Sickle Cell Disease. Scientific Reports, 2014, 4, 7173.	3.3	99
13	Exhaustion of Racing Sperm in Natureâ€Mimicking Microfluidic Channels During Sorting. Small, 2013, 9, 3374-3384.	10.0	96
14	Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication, 2011, 3, 034101.	7.1	89
15	Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation. Biomicrofluidics, 2011, 5, 022207.	2.4	85
16	Micro-a-fluidics ELISA for Rapid CD4 Cell Count at the Point-of-Care. Scientific Reports, 2014, 4, 3796.	3.3	85
17	Miniaturized lensless imaging systems for cell and microorganism visualization in pointâ€ofâ€care testing. Biotechnology Journal, 2011, 6, 138-149.	3.5	84
18	Emerging Technologies for Assembly of Microscale Hydrogels. Advanced Healthcare Materials, 2012, 1, 149-158.	7.6	83

#	Article	IF	CITATIONS
19	Use of commercial off-the-shelf digital cameras for scientific data acquisition and scene-specific color calibration. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 312.	1.5	82
20	Lensless imaging for simultaneous microfluidic sperm monitoring and sorting. Lab on A Chip, 2011, 11, 2535.	6.0	80
21	Paramagnetic Levitational Assembly of Hydrogels. Advanced Materials, 2013, 25, 1137-1143.	21.0	77
22	A multiband perfect absorber based on hyperbolic metamaterials. Scientific Reports, 2016, 6, 26272.	3.3	77
23	Enumeration of CD4+ T-Cells Using a Portable Microchip Count Platform in Tanzanian HIV-Infected Patients. PLoS ONE, 2011, 6, e21409.	2.5	74
24	Release of Magnetic Nanoparticles from Cell-Encapsulating Biodegradable Nanobiomaterials. ACS Nano, 2012, 6, 6640-6649.	14.6	74
25	Efficient on-chip isolation of HIV subtypes. Lab on A Chip, 2012, 12, 1508.	6.0	73
26	Portable microfluidic chip for detection of Escherichia coli in produce and blood. International Journal of Nanomedicine, 2012, 7, 2591.	6.7	72
27	Enhancing the Angular Sensitivity of Plasmonic Sensors Using Hyperbolic Metamaterials. Advanced Optical Materials, 2016, 4, 1767-1772.	7.3	69
28	Simple Precision Creation of Digitally Specified, Spatially Heterogeneous, Engineered Tissue Architectures. Advanced Materials, 2013, 25, 1192-1198.	21.0	67
29	Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease. Translational Research, 2016, 173, 74-91.e8.	5.0	66
30	Organismal engineering: Toward a robotic taxonomic key for devices using organic materials. Science Robotics, 2017, 2, .	17.6	61
31	Controlled viable release of selectively captured label-free cells in microchannels. Lab on A Chip, 2011, 11, 3979.	6.0	55
32	Dynamic deformability of sickle red blood cells in microphysiological flow. Technology, 2016, 04, 71-79.	1.4	54
33	Emerging technologies in medical applications of minimum volume vitrification. Nanomedicine, 2011, 6, 1115-1129.	3.3	51
34	Emerging point-of-care technologies for sickle cell disease screening and monitoring. Expert Review of Medical Devices, 2016, 13, 1073-1093.	2.8	49
35	Automated and Adaptable Quantification of Cellular Alignment from Microscopic Images for Tissue Engineering Applications. Tissue Engineering - Part C: Methods, 2011, 17, 641-649.	2.1	48
36	Smart Interface Materials Integrated with Microfluidics for Onâ€Demand Local Capture and Release of Cells. Advanced Healthcare Materials, 2012, 1, 661-668.	7.6	48

#	Article	IF	CITATIONS
37	Inhibition of Band 3 tyrosine phosphorylation: a new mechanism for treatment of sickle cell disease. British Journal of Haematology, 2020, 190, 599-609.	2.5	46
38	Microfluidic assessment of red blood cell mediated microvascular occlusion. Lab on A Chip, 2020, 20, 2086-2099.	6.0	46
39	Statistical Modeling of Single Target Cell Encapsulation. PLoS ONE, 2011, 6, e21580.	2.5	44
40	Whole blood viscosity and red blood cell adhesion: Potential biomarkers for targeted and curative therapies in sickle cell disease. American Journal of Hematology, 2020, 95, 1246-1256.	4.1	42
41	Hypoxiaâ€enhanced adhesion of red blood cells in microscale flow. Microcirculation, 2017, 24, e12374.	1.8	40
42	Bioâ€Inspired Cryoâ€Ink Preserves Red Blood Cell Phenotype and Function During Nanoliter Vitrification. Advanced Materials, 2014, 26, 5815-5822.	21.0	39
43	Hyperbolic metamaterials-based plasmonic biosensor for fluid biopsy with single molecule sensitivity. EPJ Applied Metamaterials, 2017, 4, 1.	1.5	39
44	Paper-based microchip electrophoresis for point-of-care hemoglobin testing. Analyst, The, 2020, 145, 2525-2542.	3.5	39
45	Comparison of morphology, orientation, and migration of tendon derived fibroblasts and bone marrow stromal cells on electrochemically aligned collagen constructs. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1070-1079.	4.0	37
46	Transport of a soft cargo on a nanoscale ratchet. Applied Physics Letters, 2011, 99, 063703.	3.3	37
47	ClotChip: A Microfluidic Dielectric Sensor for Point-of-Care Assessment of Hemostasis. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1459-1469.	4.0	36
48	Red blood cell adhesion to hemeâ€activated endothelial cells reflects clinical phenotype in sickle cell disease. American Journal of Hematology, 2018, 93, 1050-1060.	4.1	36
49	Leukocyte adhesion to P-selectin and the inhibitory role of Crizanlizumab in sickle cell disease: A standardized microfluidic assessment. Blood Cells, Molecules, and Diseases, 2020, 83, 102424.	1.4	35
50	Micro and Nano-Scale Technologies for Cell Mechanics. Nanobiomedicine, 2014, 1, 5.	5.7	33
51	Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices. Journal of Nanotechnology in Engineering and Medicine, 2015, 6, .	0.8	33
52	Shear dependent red blood cell adhesion in microscale flow. Integrative Biology (United Kingdom), 2018, 10, 194-206.	1.3	30
53	Red blood cell adhesion to ICAM-1 is mediated by fibrinogen and is associated with right-to-left shunts in sickle cell disease. Blood Advances, 2020, 4, 3688-3698.	5.2	28
54	The Sequential Production Profiles of Growth Factors and their Relations to Bone Volume in Ossifying Bone Marrow Explants. Tissue Engineering - Part A, 2010, 16, 2295-2306.	3.1	26

#	Article	IF	CITATIONS
55	Nanoliter droplet vitrification for oocyte cryopreservation. Nanomedicine, 2012, 7, 553-564.	3.3	26
56	Hydrogen Sensing Using Thin-Film Perfect Light Absorber. ACS Photonics, 2019, 6, 1889-1894.	6.6	25
57	Microfluidic electrical impedance assessment of red blood cell-mediated microvascular occlusion. Lab on A Chip, 2021, 21, 1036-1048.	6.0	25
58	Micro- and nanodevices integrated with biomolecular probes. Biotechnology Advances, 2015, 33, 1727-1743.	11.7	24
59	Anisotropically Stiff 3D Micropillar Niche Induces Extraordinary Cell Alignment and Elongation. Advanced Healthcare Materials, 2016, 5, 1884-1892.	7.6	23
60	Living Bacterial Sacrificial Porogens to Engineer Decellularized Porous Scaffolds. PLoS ONE, 2011, 6, e19344.	2.5	23
61	Emerging point-of-care technologies for anemia detection. Lab on A Chip, 2021, 21, 1843-1865.	6.0	22
62	3-D Microwell Array System for Culturing Virus Infected Tumor Cells. Scientific Reports, 2016, 6, 39144.	3.3	21
63	Standardized microfluidic assessment of red blood cell–mediated microcapillary occlusion: Association with clinical phenotype and hydroxyurea responsiveness in sickle cell disease. Microcirculation, 2021, 28, e12662.	1.8	21
64	Clinical Testing of Hemechip in Nigeria for Point-of-Care Screening of Sickle Cell Disease. Blood, 2018, 132, 1095-1095.	1.4	20
65	A Scaffold-Free Multicellular Three-Dimensional In Vitro Model of Osteogenesis. Calcified Tissue International, 2011, 88, 388-401.	3.1	18
66	Assessment of whole blood coagulation with a microfluidic dielectric sensor. Journal of Thrombosis and Haemostasis, 2018, 16, 2050-2056.	3.8	18
67	Point-of-care microchip electrophoresis for integrated anemia and hemoglobin variant testing. Lab on A Chip, 2021, 21, 3863-3875.	6.0	18
68	Prediction and control of number of cells in microdroplets by stochastic modeling. Lab on A Chip, 2012, 12, 4884.	6.0	17
69	Monitoring time course of human whole blood coagulation using a microfluidic dielectric sensor with a 3D capacitive structure. , 2015, 2015, 5904-7.		17
70	Functional Maintenance of Differentiated Embryoid Bodies in Microfluidic Systems: A Platform for Personalized Medicine. Stem Cells Translational Medicine, 2015, 4, 261-268.	3.3	16
71	Priapism, hemoglobin desaturation, and red blood cell adhesion in men with sickle cell anemia. Blood Cells, Molecules, and Diseases, 2019, 79, 102350.	1.4	16
72	Quantifying the influences of radiation therapy on deformability of human red blood cells by dual-beam optical tweezers. RSC Advances, 2021, 11, 15519-15527.	3.6	16

#	Article	IF	CITATIONS
73	Point-of-Care Screening for Sickle Cell Disease By a Mobile Micro-Electrophoresis Platform. Blood, 2015, 126, 3379-3379.	1.4	16
74	Size and density measurements of single sickle red blood cells using microfluidic magnetic levitation. Lab on A Chip, 2022, 22, 683-696.	6.0	16
75	Ossifying Bone Marrow Explant Culture as a Three-Dimensional Mechanoresponsive <i>In Vitro</i> Model of Osteogenesis. Tissue Engineering - Part A, 2011, 17, 417-428.	3.1	15
76	Biophysical and rheological biomarkers of red blood cell physiology and pathophysiology. Current Opinion in Hematology, 2021, 28, 138-149.	2.5	15
77	Integrating deep learning with microfluidics for biophysical classification of sickle red blood cells adhered to laminin. PLoS Computational Biology, 2021, 17, e1008946.	3.2	14
78	Blood Flow Velocimetry in a Microchannel During Coagulation Using Particle Image Velocimetry and Wavelet-Based Optical Flow Velocimetry. Journal of Biomechanical Engineering, 2021, 143, .	1.3	13
79	A monolithic Lagrangian meshfree scheme for Fluid–Structure Interaction problems within the OTM framework. Computer Methods in Applied Mechanics and Engineering, 2018, 337, 198-219.	6.6	12
80	Mercury leads to abnormal red blood cell adhesion to laminin mediated by membrane sulfatides. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1162-1171.	2.6	12
81	3D-Printed Biohybrid Robots Powered by Neuromuscular Tissue Circuits from Aplysia californica. Lecture Notes in Computer Science, 2017, , 475-486.	1.3	12
82	Biomimetic post-capillary venule expansions for leukocyte adhesion studies. Scientific Reports, 2018, 8, 9328.	3.3	11
83	Hydrogen gas sensing using aluminum doped ZnO metasurfaces. Nanoscale Advances, 2020, 2, 3452-3459.	4.6	11
84	State Estimator Design for Multicomponent Batch Distillation Columns. Chemical Engineering Research and Design, 2005, 83, 433-444.	5.6	8
85	An RF/microwave microfluidic sensor for miniaturized dielectric spectroscopy based on sensor transmission characteristics. , 2015, , .		7
86	Integrated Anemia Detection and Hemoglobin Variant Identification Using Point-of-Care Microchip Electrophoresis. Blood, 2019, 134, 378-378.	1.4	7
87	Dynamic pH and Thermal Analysis of Paper-Based Microchip Electrophoresis. Micromachines, 2021, 12, 1433.	2.9	7
88	Evaluation of Epithelial Chimerism After Bone Marrow Mesenchymal Stromal Cell Infusion in Intestinal Transplant Patients. Transplantation Proceedings, 2014, 46, 2125-2132.	0.6	6
89	Microfluidic processing of synovial fluid for cytological analysis. Biomedical Microdevices, 2017, 19, 20.	2.8	6
90	A low-cost, mass-producible point-of-care platform for diagnosing hemoglobin disorders. , 2017, , .		6

#	Article	IF	CITATIONS
91	Integrated Point-of-Care Device for Anemia Detection and Hemoglobin Variant Identification. , 2019, , .		6
92	Towards access for all: 1st Working Group Report for the Global Gene Therapy Initiative (GGTI). Gene Therapy, 2023, 30, 216-221.	4.5	6
93	Ultrathin-film optical coating for angle-independent remote hydrogen sensing. Measurement Science and Technology, 2020, 31, 115201.	2.6	6
94	Immune and Inflammatory Pathways are Involved in Inherent Bone Marrow Ossification. Clinical Orthopaedics and Related Research, 2012, 470, 2528-2540.	1.5	5
95	International Multi-Site Clinical Validation of Point-of-Care Microchip Electrophoresis Test for Hemoglobin Variant Identification. Blood, 2019, 134, 3373-3373.	1.4	5
96	SCD-Biochip: A Functional Assay for Red Cell Adhesion in Sickle Cell Disease. Blood, 2014, 124, 4053-4053.	1.4	5
97	An RF/microwave microfluidic sensor based on a 3D capacitive structure with a floating electrode for miniaturized dielectric spectroscopy. , 2014, , .		4
98	A PMMA microfluidic dielectric sensor for blood coagulation monitoring at the point-of-care. , 2016, 2016, 291-294.		4
99	Heterogeneous Hypoxia-Mediated Neutrophil and Red Blood Cell Adhesion to E-Selectin in Microscale Flow. Blood, 2018, 132, 3671-3671.	1.4	4
100	A retrospective case study of successful translational research: Gazelle Hb variant point-of-care diagnostic device for sickle cell disease. Journal of Clinical and Translational Science, 2021, 5, e207.	0.6	4
101	Computer Vision and Deep Learning Assisted Microchip Electrophoresis for Integrated Anemia and Sickle Cell Disease Screening. Blood, 2020, 136, 46-47.	1.4	3
102	Advancing Healthcare Outcomes for Sickle Cell Disease in Nigeria Using Mobile Health Tools. Blood, 2019, 134, 2173-2173.	1.4	3
103	<scp>Antithrombinâ€III</scp> mitigates thrombinâ€mediated endothelial cell contraction and sickle red blood cell adhesion in microscale flow. British Journal of Haematology, 2022, 198, 893-902.	2.5	3
104	Assessment of Red Blood Cell-Mediated Microvascular Occlusion in Sickle Cell Disease By a Novel Electrical Impedance-Based Microfluidic Device. Blood, 2020, 136, 10-10.	1.4	2
105	Hypoxia Responsiveness in RBCs from Patients with Sickle Cell Disease Associates with a More Severe Clinical Phenotype. Blood, 2016, 128, 3643-3643.	1.4	2
106	Adhesion of Sickle RBCs to Heme-Activated Endothelial Cells Correlates with Patient Clinical Phenotypes. Blood, 2017, 130, 959-959.	1.4	2
107	An Implantable Magnetoelastic Sensor System for Wireless Physiological Sensing of Viscosity. , 2007, ,		1
108	Contribution of Red Blood Cell Derived Extracellular Vesicles to Sickle Red Blood Cell Adhesion Discerned Using an Endothelialized Microfluidic Assay. Blood, 2020, 136, 13-14.	1.4	1

#	Article	IF	CITATIONS
109	A Miniaturized Microfluidic Dielectric Sensor for Point-of-Care Assessment of Blood Coagulation. Blood, 2016, 128, 3754-3754.	1.4	1
110	Hypoxia Enhanced Red Cell Adhesion in Vitro May Identify Patients at Risk for Vasculopathy. Blood, 2018, 132, 3672-3672.	1.4	1
111	Point-of-Care Microchip Electrophoresis Test for Glycosylated Hemoglobin. , 2022, , .		1
112	Editorial: Scaffoldâ€free cellâ€based approaches in biomedicine and biotechnology. Biotechnology Journal, 2011, 6, 1426-1427.	3.5	0
113	Monitoring blood coagulation using a surface-functionalized microfluidic dielectric sensor. , 2017, , .		0
114	Live Demonstration: HemeChip - A Portable Microchip Electrophoresis Technology for Point-of-Care Sickle Cell Disease Screening. , 2018, , .		0
115	Poloxamer 188 vs Placebo for Painful Vaso-occlusive Episodes in Children and Adults With Sickle Cell Disease. JAMA - Journal of the American Medical Association, 2021, 326, 975.	7.4	0
116	Mechanical Stimulation Enhances the Production of BMP-2 in Ossifying Rat Bone Marrow Organ Cultures. , 2009, , .		0
117	Red Blood Cell Adhesion Is Increased in the Young Adult Population with Sickle Cell Disease. Blood, 2018, 132, 2387-2387.	1.4	0