Hans-Christoph Nuerk

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/2553379/publications.pdf
Version: 2024-02-01

Training causes activation increase in temporo-parietal and parietal regions in children with
mathematical disabilities. Brain Structure and Function, 2022, 227, 1757-1771.
Mathematicsâ€"gender stereotype endorsement influences mathematics anxiety, selfâ \in concept, and performance differently in men and women. Annals of the New York Academy of Sciences, 2022, 1513, 121-139.

$$
\text { Arithmetic Errors in Financial Contexts in Parkinsonâ } \epsilon^{\mathrm{TM}} \text { S Disease. Frontiers in Psychology, 2021, 12, }
$$

$7 \quad 629984$.

The spatialấ"numerical association of response codes effect and math skills: why related?. Annals of

Functional lateralization of arithmetic processing in the intraparietal sulcus is associated with

```
Oscillatory EEG Changes During Arithmetic Learning in Children. Developmental Neuropsychology,
2019, 44, 325-338.
19 2019, 44, 325-338.
```

1.4

14

Math Anxiety in Combination With Low Visuospatial Memory Impairs Math Learning in Children.
$20 \quad$ Math Anxiety in Combination With Low
2.1

22
Diversity of functional illiterate cases: Results from aÂmultiple-single case study. Zeitschrift Fur
Erziehungswissenschaft, 2019, 22, 123-151.
$2.9 \quad 2$ Erziehungswissenschaft, 2019, 22, 123-151.

The SNARC and MARC effects measured online: Large-scale assessment methods in flexible cognitive effects. Behavior Research Methods, 2019, 51, 1676-1692.
4.0

40

No Difference in the Neural Underpinnings of Number and Letter Copying in Children: Bayesian
Analysis of Functional Nearâ€lnfrared Spectroscopy Data. Mind, Brain, and Education, 2019, 13, 313-325.
1.9

Music-space associations are grounded, embodied and situated: examination of cello experts and non-musicians in a standard tone discrimination task. Psychological Research, 2019, 83, 894-906.
1.7

Individual differences influence two-digit number processing, but not their analog magnitude
processing: a large-scale online study. Psychological Research, 2019, 83, 1444-1464.
1.7

20

26 Different Ways to Measure Math Anxiety. , 2019, , 20-41.
9

> Stress-related dysfunction of the right inferior frontal cortex in high ruminators: An fNIRS study.
> Neurolmage: Clinical, 2018, 18, 510-517.
2.7

49

28 Visuospatial biases in preschool children: Evidence from line bisection in three-dimensional space. Journal of Experimental Child Psychology, 2018, 173, 16-27.

> Reduction but no shift in brain activation after arithmetic learning in children: A simultaneous
> fNIRS-EEG study. Scientific Reports, 2018, 8, 1707.
3.3

41

30 Reduction of implicit cognitive bias with cathodal tDCS to the left prefrontal cortex. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 263-272.
2.0

4
Cortical hemodynamic changes during the Trier Social Stress Test: An fNIRS study. Neurolmage, 2018,
$171,107-115$.

32 Spatial Presentations, but Not Response Formats Influence Spatial-Numerical Associations in Adults. Frontiers in Psychology, 2018, 9, 2608.
$2.1 \quad 0$

Disrupted prefrontal functional connectivity during post-stress adaption in high ruminators.
Scientific Reports, $2018,8,15588$.
$3.3 \quad 18$

More Space, Better Mathematics: Is Space a Powerful Tool or a Cornerstone for Understanding
Arithmetic?. Research in Mathematics Education, 2018, , 77-116.

[^0]3.3

8

```
37 How Deep Is Your SNARC? Interactions Between Numerical Magnitude, Response Hands, and
37 Reachability in Peripersonal Space. Frontiers in Psychology, 2018, 9, 622.
```

$2.1 \quad 9$

A Mental Odd-Even Continuum Account: Some Numbers May Be â€œMore Oddâ $€ \cdot{ }^{\circ}$ Than Others and Some Numbers May Be â€œMore Evenâ€•Than Others. Frontiers in Psychology, 2018, 9, 1081.
$2.1 \quad 4$

Applying embodied cognition: from useful interventions and their theoretical underpinnings to practical applications. ZDM - International Journal on Mathematics Education, 2017, 49, 545-557.
Limitations of Transâ€Species Inferences: The Case of Spatialâ€Numerical Associations in Chicks and
Humans. Cognitive Science, 2017, 41, 2267-2274.
How to rapidly construct a spatialâ€"numerical representation in preliterate children (at least) Tj ETQq1 10.784314 rgBT /Overlock 1

```

56 Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement. Scientific Reports, 2016, 6, 22003.
3.3

81
A general model framework for multisymbol number comparison.. Psychological Review, 2016, 123,
3.8

667-695.

Training the equidistant principle of number line spacing. Cognitive Processing, 2016, 17, 243-258.
1.4

16
Professional mathematicians differ from controls in their spatial-numerical associations.
Psychological Research, 2016, 80, 710-726.
73
74
        Does your body count? Embodied influences on the preferred counting direction of preschoolers.

Toward a model framework of generalized parallel componential processing of multi-symbol numbers.. Journal of Experimental Psychology: Learning Memory and Cognition, 2015, 41, 732-745.
81 NIRS in motionÃ¢â, ᄀâ€unraveling the neurocognitive underpinnings of embodied numerical cognition.
\(2.1 \quad 10\)
\[
\text { Frontiers in Psychology, 2014, 5, } 743 .
\]
83 Aspects of situated cognition in embodied numerosity: the case of finger counting. Cognitive Processing, 2014, 15, 317-328.

\footnotetext{
Is the SNARC Effect Related to the Level of Mathematics? No Systematic Relationship Observed despite
89 More Power, More Repetitions, and More Direct Assessment of Arithmetic Skill. Quarterly Journal of
Experimental Psychology, 2013, 66, 1974-1991.
}
1.1

78
91 Unbounding the mental number lineâ€"new evidence on children's spatial representation of numbers. Frontiers in Psychology, 2013, 4, 1021.
Interventions Supporting Childrenâ \(€^{T M}{ }_{S}\) Mathematics School Success. European Psychologist, 2013, 18,
3.1
Diagnostics and Intervention in Developmental Dyscalculia: Current Issues and Novel Perspectives. , 2012, , 233-275.

94 Learning and development of embodied numerosity. Cognitive Processing, 2012, 13, 271-274.
1.4

83
\begin{tabular}{|c|c|c|c|}
\hline 95 & On the development of Arabic three-digit number processing in primary school children. Journal of Experimental Child Psychology, 2012, 113, 594-601. & 1.4 & 21 \\
\hline 96 & Multi-digit number processing beyond the two-digit number range: A combination of sequential and parallel processes. Acta Psychologica, 2012, 140, 81-90. & 1.5 & 30 \\
\hline 97 & Sensori-motor spatial training of number magnitude representation. Psychonomic Bulletin and Review, 2011, 18, 177-183. & 2.8 & 127 \\
\hline 98 & The Influence of Implicit Hand-Based Representations on Mental Arithmetic. Frontiers in Psychology, 2011, 2, 197. & 2.1 & 58 \\
\hline 99 & Language Effects on Childrenâ \(\epsilon^{T M}\) s Nonverbal Number Line Estimations. Journal of Cross-Cultural Psychology, 2011, 42, 598-613. & 1.6 & 67 \\
\hline
\end{tabular}
Multimodal Semantic Quantity Representations: Further Evidence from Korean Sign Language.

Frontiers in Psychology, 2011, 2, 389.
101 Multi-Digit Number Processing. Zeitschrift Fur Psychologie / Journal of Psychology, 2011, 219, 1-2.
1.07102 Extending the Mental Number Line. Zeitschrift Fur Psychologie / Journal of Psychology, 2011, 219, 3-22.1.094
103 Attentional Strategies in Place-Value Integration. Zeitschrift Fur Psychologie / Journal of Psychology,1.014
2011, 219, 42-49.Embodied numerosity: Implicit hand-based representations influence symbolic number processing2.2across cultures. Cognition, 2010, 116, 251-266.Sequential or parallel decomposed processing of two-digit numbers? Evidence from eye-tracking.1.159
105 Quarterly Journal of Experimental Psychology, 2009, 62, 323-334.On the language specificity of basic number processing: Transcoding in a language with inversion andits relation to working memory capacity. Journal of Experimental Child Psychology, 2009, 102, 60-77.

Language effects in magnitude comparison: Small, but not irrelevant. Brain and Language, 2005, 92, 262-277.
On the Perceptual Generality of the Unit-Decade Compatibility Effect. Experimental Psychology, 2004,

Notational Modulation of the SNARC and the MARC (Linguistic Markedness of Response Codes) Effect.
113 Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 2004, 57,

\section*{835-863.}

On the Development of the Mental Number Line: More, Less, or Never Holistic With Increasing Age?. Developmental Psychology, 2004, 40, 1199-1211.
1.6

121```


[^0]:    35
    Attention allows the SNARC effect to operate on multiple number lines. Scientific Reports, 2018, 8,
    13778.

