
Guillaume Gronoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2553357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensitivity of total column NO2 at a marine site within the Chesapeake Bay during OWLETS-2. Atmospheric Environment, 2022, 277, 119063.	4.1	10
2	Retrieval of UVB aerosol extinction profiles from the ground-based Langley Mobile Ozone Lidar (LMOL) system. Atmospheric Measurement Techniques, 2022, 15, 2465-2478.	3.1	1
3	Radiation Environment and Doses on Mars at Oxia Planum and Mawrth Vallis: Support for Exploration at Sites With High Biosignature Preservation Potential. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006488.	3.6	14
4	Case study of stratospheric intrusion above Hampton, Virginia: Lidar-observation and modeling analysis. Atmospheric Environment, 2021, 259, 118498.	4.1	9
5	Tropospheric NO ₂ measurements using a three-wavelength optical parametric oscillator differential absorption lidar. Atmospheric Measurement Techniques, 2021, 14, 4069-4082.	3.1	2
6	Synergistic aircraft and ground observations of transported wildfire smoke and its impact on air quality in New York City during the summer 2018 LISTOS campaign. Science of the Total Environment, 2021, 773, 145030.	8.0	16
7	NExtUP: the Normal-incidence Extreme Ultraviolet Photometer. , 2021, , .		2
8	Volatile chemical product emissions enhance ozone and modulate urban chemistry. Proceedings of the United States of America, 2021, 118, .	7.1	103
9	Observations of bay-breeze and ozone events over a marine site during the OWLETS-2 campaign. Atmospheric Environment, 2021, 263, 118669.	4.1	10
10	Vertical Profiles of Ozone Concentrations in the Lower Troposphere Downwind of New York City During LISTOS 2018–2019. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035108.	3.3	9
11	Impact of space weather on climate and habitability of terrestrial-type exoplanets. International Journal of Astrobiology, 2020, 19, 136-194.	1.6	125
12	Evaluation of NASA's high-resolution global composition simulations: Understanding a pollution event in the Chesapeake Bay during the summer 2017 OWLETS campaign. Atmospheric Environment, 2020, 222, 117133.	4.1	20
13	Atmospheric Escape Processes and Planetary Atmospheric Evolution. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027639.	2.4	58
14	The Effect of Cosmic Rays on Cometary Nuclei. I. Dose Deposition. Astrophysical Journal, 2020, 890, 89.	4.5	18
15	The Effect of Cosmic Rays on Cometary Nuclei. II. Impact on Ice Composition and Structure. Astrophysical Journal, 2020, 901, 136.	4.5	13
16	Evaluation of UV aerosol retrievals from an ozone lidar. Atmospheric Measurement Techniques, 2020, 13, 5277-5292.	3.1	6
17	Modeling and Lidar Study on Ozone Over the Chesapeake Bay During OWLETS-2. EPJ Web of Conferences, 2020, 237, 03015.	0.3	0
18	Variation of Ozone and PBL from the Lidar Observations and WRF-Chem Model in NYC Area During the 2018 Summer LISTOS Campaign. EPJ Web of Conferences, 2020, 237, 08027.	0.3	0

GUILLAUME GRONOFF

#	Article	IF	CITATIONS
19	Solar wind charge exchange in cometary atmospheres. Astronomy and Astrophysics, 2019, 630, A36.	5.1	11
20	Demonstration of an off-axis parabolic receiver for near-range retrieval of lidar ozone profiles. Atmospheric Measurement Techniques, 2019, 12, 363-370.	3.1	13
21	Modeling a Transient Secondary Paleolunar Atmosphere: 3â€Ð Simulations and Analysis. Geophysical Research Letters, 2019, 46, 5107-5116.	4.0	16
22	A method for quantifying near range point source induced O3 titration events using Co-located Lidar and Pandora measurements. Atmospheric Environment, 2019, 204, 43-52.	4.1	30
23	Solar wind charge exchange in cometary atmospheres. Astronomy and Astrophysics, 2019, 630, A37.	5.1	21
24	Solar wind charge exchange in cometary atmospheres. Astronomy and Astrophysics, 2019, 630, A35.	5.1	14
25	The Ozone Water–Land Environmental Transition Study: An Innovative Strategy for Understanding Chesapeake Bay Pollution Events. Bulletin of the American Meteorological Society, 2019, 100, 291-306.	3.3	41
26	Validation of the TOLNet lidars: the Southern California Ozone Observation Project (SCOOP). Atmospheric Measurement Techniques, 2018, 11, 6137-6162.	3.1	40
27	Validation of the TOLNet lidars during SCOOP (Southern California Ozone Observation Project). EPJ Web of Conferences, 2018, 176, 05019.	0.3	0
28	TOLNet ozone lidar intercomparison during the discover-aq and frappé campaigns. EPJ Web of Conferences, 2018, 176, 10007.	0.3	1
29	On the Magnetic Protection of the Atmosphere of Proxima Centauri b. Astrophysical Journal Letters, 2017, 844, L13.	8.3	107
30	Hybrid modelling of cometary plasma environments. Astronomy and Astrophysics, 2017, 604, A73.	5.1	37
31	Langley mobile ozone lidar: ozone and aerosol atmospheric profiling for air quality research. Applied Optics, 2017, 56, 721.	2.1	34
32	Quantifying TOLNet ozone lidar accuracy during the 2014 DISCOVER-AQ and FRAPPÉ campaigns. Atmospheric Measurement Techniques, 2017, 10, 3865-3876.	3.1	21
33	The atmosphere of comet 67P/Churyumov-Gerasimenko diagnosed by charge-exchanged solar wind alpha particles. Astronomy and Astrophysics, 2016, 587, A154.	5.1	33
34	Cosmic radiation dose measurements from the RaD-X flight campaign. Space Weather, 2016, 14, 874-898.	3.7	30
35	Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nature Geoscience, 2016, 9, 452-455.	12.9	213
36	2D photochemical model for forbidden oxygen line emission for comet 1P/Halley. Monthly Notices of the Royal Astronomical Society, 2016, 462, S116-S123.	4.4	1

GUILLAUME GRONOFF

#	Article	IF	CITATIONS
37	Assessment of the influence of the RaD-X balloon payload on the onboard radiation detectors. Space Weather, 2016, 14, 835-845.	3.7	5
38	Ground-based evaluation of dosimeters for NASA high-altitude balloon flight. Space Weather, 2016, 14, 1011-1025.	3.7	13
39	Photochemistry of forbidden oxygen lines in the inner coma of 67P/Churyumovâ€Gerasimenko. Journal of Geophysical Research: Space Physics, 2016, 121, 804-816.	2.4	10
40	1D-coupled photochemical model of neutrals, cations and anions in the atmosphere of Titan. Icarus, 2016, 268, 313-339.	2.5	109
41	The early Earth under a superflare and super-CME attack: prospects for life. Proceedings of the International Astronomical Union, 2015, 11, 409-415.	0.0	2
42	Prediction of blue, red and green aurorae at Mars. Planetary and Space Science, 2015, 115, 48-56.	1.7	11
43	Computation of cosmic ray ionization and dose at Mars. I: A comparison of HZETRN and Planetocosmics for proton and alpha particles. Advances in Space Research, 2015, 55, 1799-1805.	2.6	35
44	The neutral photochemistry of nitriles, amines and imines in the atmosphere of Titan. Icarus, 2015, 247, 218-247.	2.5	118
45	Titan's emission processes during eclipse. Icarus, 2014, 241, 397-408.	2.5	6
46	Influence of dust loading on atmospheric ionizing radiation on Mars. Journal of Geophysical Research: Space Physics, 2014, 119, 452-461.	2.4	21
47	THEORETICAL UV ABSORPTION SPECTRA OF HYDRODYNAMICALLY ESCAPING O ₂ /CO ₂ -RICH EXOPLANETARY ATMOSPHERES. Astrophysical Journal, 2014, 788, 191.	4.5	23
48	Can hydrogen coronae be inferred around a CO2-dominated exoplanetary atmosphere?. Icarus, 2014, 239, 23-31.	2.5	23
49	The precipitation of keV energetic oxygen ions at Mars and their effects during the comet Siding Spring approach. Geophysical Research Letters, 2014, 41, 4844-4850.	4.0	17
50	Dications and thermal ions in planetary atmospheric escape. Icarus, 2013, 222, 169-187.	2.5	33
51	Computing uncertainties in ionosphereâ€airglow models: I. Electron ï¬,ux and species production uncertainties for Mars. Journal of Geophysical Research, 2012, 117, .	3.3	12
52	Computing uncertainties in ionosphereâ€airglow models: II. The Martian airglow. Journal of Geophysical Research, 2012, 117, .	3.3	36
53	Numerical simulation of the effects of a solar energetic particle event on the ionosphere of Mars. Journal of Geophysical Research, 2012, 117, .	3.3	35
54	Transmission spectrum of Venus as a transiting exoplanet. Astronomy and Astrophysics, 2012, 537, L2.	5.1	51

4

GUILLAUME GRONOFF

#	Article	IF	CITATIONS
55	Photoabsorption in Ganymede's atmosphere. Icarus, 2012, 218, 308-319.	2.5	5
56	Doubly-charged ions in the planetary ionospheres: a review. Physical Chemistry Chemical Physics, 2011, 13, 18264.	2.8	92
57	Auroral Formation and Plasma Interaction Between Magnetized Objects Simulated With the Planeterrella. IEEE Transactions on Plasma Science, 2011, 39, 2712-2713.	1.3	4
58	Polarisation in the auroral red line during coordinated EISCAT Svalbard Radar/optical experiments. Annales Geophysicae, 2011, 29, 1101-1112.	1.6	4
59	Comprehensive calculation of the energy per ion pair or <l>W</l> values for five major planetary upper atmospheres. Annales Geophysicae, 2011, 29, 187-195.	1.6	60
60	lonization processes in the atmosphere of Titan. Astronomy and Astrophysics, 2011, 529, A143.	5.1	30
61	Ionization processes in the atmosphere of Titan. Astronomy and Astrophysics, 2009, 506, 955-964.	5.1	45
62	A fast computation of the secondary ion production in the ionosphere of Mars. Monthly Notices of the Royal Astronomical Society, 2009, 400, 369-382.	4.4	19
63	Dayglow on Mars: Kinetic modelling with SPICAM UV limb data. Planetary and Space Science, 2009, 57, 1008-1021.	1.7	47
64	The Planeterrella, a pedagogic experiment in planetology and plasma physics. Acta Geophysica, 2009, 57, 220-235.	2.0	5
65	Ionization processes in the atmosphere of Titan. Astronomy and Astrophysics, 2009, 506, 965-970.	5.1	30
66	Modelling the Venusian airglow. Astronomy and Astrophysics, 2008, 482, 1015-1029.	5.1	50
67	Modelling dications in the diurnal ionosphere of Venus. Astronomy and Astrophysics, 2007, 465, 641-645.	5.1	35