
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/255323/publications.pdf Version: 2024-02-01

TEDIE CORAKKEN

#	Article	IF	CITATIONS
1	<i>In-situ</i> calibration of stand level merchantable and sawlog volumes using cut-to-length harvester measurements and airborne laser scanning data. Forestry, 2022, 95, 105-117.	2.3	0
2	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	11.0	108
3	A framework for a forest ecological base map – An example from Norway. Ecological Indicators, 2022, 136, 108636.	6.3	9
4	Detection of Root, Butt, and Stem Rot presence in Norway spruce with hyperspectral imagery. Silva Fennica, 2022, 56, .	1.3	6
5	Delineation of Geomorphological Woodland Key Habitats Using Airborne Laser Scanning. Remote Sensing, 2022, 14, 1184.	4.0	4
6	Fine-Spatial Boreal–Alpine Single-Tree Albedo Measured by UAV: Experiences and Challenges. Remote Sensing, 2022, 14, 1482.	4.0	2
7	Wood Decay Detection in Norway Spruce Forests Based on Airborne Hyperspectral and ALS Data. Remote Sensing, 2022, 14, 1892.	4.0	3
8	Comparing frameworks for biomass prediction for the Global Ecosystem Dynamics Investigation. Remote Sensing of Environment, 2022, 278, 113074.	11.0	16
9	On the Potential of Sequential and Nonsequential Regression Models for Sentinel-1-Based Biomass Prediction in Tanzanian Miombo Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4612-4639.	4.9	5
10	Comparison of linear regression, k-nearest neighbour and random forest methods in airborne laser-scanning-based prediction of growing stock. Forestry, 2021, 94, 311-323.	2.3	20
11	Economic utility of 3D remote sensing data for estimation of site index in Nordic commercial forest inventories: a comparison of airborne laser scanning, digital aerial photogrammetry and conventional practices. Scandinavian Journal of Forest Research, 2021, 36, 55-67.	1.4	6
12	Inventory of Forest Attributes to Support the Integration of Non-provisioning Ecosystem Services and Biodiversity into Forest Planning—from Collecting Data to Providing Information. Current Forestry Reports, 2021, 7, 38-58.	7.4	15
13	Coupling a differential global navigation satellite system to a cut-to-length harvester operating system enables precise positioning of harvested trees. International Journal of Forest Engineering, 2021, 32, 119-127.	0.8	10
14	Comparison of two algorithms for estimating stand-level changes and change indicators in a boreal forest in Norway. International Journal of Applied Earth Observation and Geoinformation, 2021, 98, 102316.	2.8	2
15	Comparing 3D Point Cloud Data from Laser Scanning and Digital Aerial Photogrammetry for Height Estimation of Small Trees and Other Vegetation in a Boreal–Alpine Ecotone. Remote Sensing, 2021, 13, 2469.	4.0	3
16	Effect of root and butt rot uncertainty on optimal harvest schedules and expected incomes at the stand level. Annals of Forest Science, 2021, 78, 1.	2.0	3
17	Relationships between single-tree mountain birch summertime albedo and vegetation properties. Agricultural and Forest Meteorology, 2021, 307, 108470.	4.8	12
18	Predicting and mapping site index in operational forest inventories using bitemporal airborne laser scanner data. Forest Ecology and Management, 2020, 457, 117768.	3.2	33

#	Article	IF	CITATIONS
19	Modelling and quantifying tree biometric properties of dry Afromontane forests of south-central Ethiopia. Trees - Structure and Function, 2020, 34, 1411-1426.	1.9	6
20	Field calibration of merchantable and sawlog volumes in forest inventories based on airborne laser scanning. Canadian Journal of Forest Research, 2020, 50, 1352-1364.	1.7	6
21	Use of Remotely Sensed Data to Enhance Estimation of Aboveground Biomass for the Dry Afromontane Forest in South-Central Ethiopia. Remote Sensing, 2020, 12, 3335.	4.0	12
22	Use of local and global maps of forest canopy height and aboveground biomass to enhance local estimates of biomass in miombo woodlands in Tanzania. International Journal of Applied Earth Observation and Geoinformation, 2020, 89, 102109.	2.8	5
23	Aboveground tree biomass prediction options for the Dry Afromontane forests in south-central Ethiopia. Forest Ecology and Management, 2020, 473, 118335.	3.2	17
24	Benefits of past inventory data as prior information for the current inventory. Forest Ecosystems, 2020, 7, .	3.1	4
25	Generation of Lidar-Predicted Forest Biomass Maps from Radar Backscatter with Conditional Generative Adversarial Networks. , 2020, , .		4
26	An application niche for finite mixture models in forest resource surveys. Canadian Journal of Forest Research, 2019, 49, 1453-1462.	1.7	3
27	A Model-Dependent Method for Monitoring Subtle Changes in Vegetation Height in the Boreal–Alpine Ecotone Using Bi-Temporal, Three Dimensional Point Data from Airborne Laser Scanning. Remote Sensing, 2019, 11, 1804.	4.0	7
28	Modelling Site Index in Forest Stands Using Airborne Hyperspectral Imagery and Bi-Temporal Laser Scanner Data. Remote Sensing, 2019, 11, 1020.	4.0	9
29	Effects of UAV Image Resolution, Camera Type, and Image Overlap on Accuracy of Biomass Predictions in a Tropical Woodland. Remote Sensing, 2019, 11, 948.	4.0	36
30	Optimizing Field Data Collection for Individual Tree Attribute Predictions Using Active Learning Methods. Remote Sensing, 2019, 11, 949.	4.0	2
31	Comparing the accuracies of forest attributes predicted from airborne laser scanning and digital aerial photogrammetry in operational forest inventories. Remote Sensing of Environment, 2019, 226, 26-37.	11.0	39
32	Classifications of Forest Change by Using Bitemporal Airborne Laser Scanner Data. Remote Sensing, 2019, 11, 2145.	4.0	18
33	Estimating stand level stem diameter distribution utilizing harvester data and airborne laser scanning. Silva Fennica, 2019, 53, .	1.3	20
34	Predicting dynamic modulus of elasticity of Norway spruce structural timber by forest inventory, airborne laser scanning and harvester-derived data. Scandinavian Journal of Forest Research, 2018, 33, 603-612.	1.4	6
35	Assessing components of the model-based mean square error estimator for remote sensing assisted forest applications. Canadian Journal of Forest Research, 2018, 48, 642-649.	1.7	40
36	Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data. European Journal of Remote Sensing, 2018, 51, 336-351.	3.5	48

#	Article	IF	CITATIONS
37	Remote sensing and forest inventories in Nordic countries – roadmap for the future. Scandinavian Journal of Forest Research, 2018, 33, 397-412.	1.4	111
38	Effects of terrain slope and aspect on the error of ALS-based predictions of forest attributes. Forestry, 2018, 91, 225-237.	2.3	13
39	Monitoring small pioneer trees in the forest-tundra ecotone: using multi-temporal airborne laser scanning data to model height growth. Environmental Monitoring and Assessment, 2018, 190, 12.	2.7	10
40	Estimation of biomass change in montane forests in Norway along a 1200â€km latitudinal gradient using airborne laser scanning: a comparison of direct and indirect prediction of change under a model-based inferential approach. Scandinavian Journal of Forest Research, 2018, 33, 155-165.	1.4	16
41	Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference. Remote Sensing of Environment, 2018, 204, 485-497.	11.0	120
42	Large-area hybrid estimation of aboveground biomass in interior Alaska using airborne laser scanning data. Remote Sensing of Environment, 2018, 204, 741-755.	11.0	24
43	Predicting stem diameters and aboveground biomass of individual trees using remote sensing data. Ecological Indicators, 2018, 85, 367-376.	6.3	49
44	Prediction of Forest Attributes with Multispectral Lidar Data. , 2018, , .		0
45	Comparing the stock-change and gain–loss approaches for estimating forest carbon emissions for the aboveground biomass pool. Canadian Journal of Forest Research, 2018, 48, 1535-1542.	1.7	16
46	Multi-sensor forest vegetation height mapping methods for Tanzania. European Journal of Remote Sensing, 2018, 51, 587-606.	3.5	13
47	Utilizing accurately positioned harvester data: modelling forest volume with airborne laser scanning. Canadian Journal of Forest Research, 2018, 48, 913-922.	1.7	13
48	A new approach with DTM-independent metrics for forest growing stock prediction using UAV photogrammetric data. Remote Sensing of Environment, 2018, 213, 195-205.	11.0	79
49	Geostatistical estimation of forest biomass in interior Alaska combining Landsat-derived tree cover, sampled airborne lidar and field observations. Remote Sensing of Environment, 2018, 212, 212-230.	11.0	39
50	Estimation of Forest Area and Canopy Cover Based on Visual Interpretation of Satellite Images in Ethiopia. Land, 2018, 7, 92.	2.9	14
51	Comparing Three Different Ground Based Laser Scanning Methods for Tree Stem Detection. Remote Sensing, 2018, 10, 538.	4.0	46
52	Predicting Selected Forest Stand Characteristics with Multispectral ALS Data. Remote Sensing, 2018, 10, 586.	4.0	25
53	Direct and indirect site index determination for Norway spruce and Scots pine using bitemporal airborne laser scanner data. Forest Ecology and Management, 2018, 428, 104-114.	3.2	33
54	Value of airborne laser scanning and digital aerial photogrammetry data in forest decision making. Silva Fennica, 2018, 52, .	1.3	32

#	Article	IF	CITATIONS
55	Assessing 3D point clouds from aerial photographs for species-specific forest inventories. Scandinavian Journal of Forest Research, 2017, 32, 68-79.	1.4	65
56	Accurate single-tree positions from a harvester: a test of two global satellite-based positioning systems. Scandinavian Journal of Forest Research, 2017, 32, 774-781.	1.4	22
57	Biomass and InSAR height relationship in a dense tropical forest. Remote Sensing of Environment, 2017, 192, 166-175.	11.0	51
58	A new prediction-based variance estimator for two-stage model-assisted surveys of forest resources. Remote Sensing of Environment, 2017, 192, 1-11.	11.0	5
59	Individual tree crown approach for predicting site index in boreal forests using airborne laser scanning and hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 2017, 60, 72-82.	2.8	25
60	Post-stratified change estimation for large-area forest biomass using repeated ALS strip sampling. Canadian Journal of Forest Research, 2017, 47, 839-847.	1.7	14
61	Use of partial-coverage UAV data in sampling for large scale forest inventories. Remote Sensing of Environment, 2017, 194, 115-126.	11.0	70
62	Decision-support tool for management of miombo woodlands: a matrix model approach. Southern Forests, 2017, 79, 65-77.	0.7	2
63	The efficiency of poststratification compared with model-assisted estimation. Canadian Journal of Forest Research, 2017, 47, 515-526.	1.7	16
64	Optimizing nearest neighbour configurations for airborne laser scanning-assisted estimation of forest volume and biomass. Forestry, 2017, 90, 99-111.	2.3	9
65	Combining airborne laser scanning and Landsat data for statistical modeling of soil carbon and tree biomass in Tanzanian Miombo woodlands. Carbon Balance and Management, 2017, 12, 8.	3.2	9
66	Methods for variable selection in LiDAR-assisted forest inventories. Forestry, 2017, 90, 112-124.	2.3	28
67	Temporal variation in habitat selection breaks the catchâ€22 of spatially contrasting predation risk from multiple predators. Oikos, 2017, 126, 624-632.	2.7	32
68	Large-scale estimation of change in aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data. Remote Sensing of Environment, 2017, 188, 106-117.	11.0	46
69	Automatic Estimation of Tree Position and Stem Diameter Using a Moving Terrestrial Laser Scanner. Remote Sensing, 2017, 9, 350.	4.0	35
70	Influence of Plot Size on Efficiency of Biomass Estimates in Inventories of Dry Tropical Forests Assisted by Photogrammetric Data from an Unmanned Aircraft System. Remote Sensing, 2017, 9, 610.	4.0	31
71	Modelling above Ground Biomass in Tanzanian Miombo Woodlands Using TanDEM-X WorldDEM and Field Data. Remote Sensing, 2017, 9, 984.	4.0	10
72	Comparing Empirical and Semi-Empirical Approaches to Forest Biomass Modelling in Different Biomes Using Airborne Laser Scanner Data. Forests, 2017, 8, 170.	2.1	10

#	Article	IF	CITATIONS
73	Countering Negative Effects of Terrain Slope on Airborne Laser Scanner Data Using Procrustean Transformation and Histogram Matching. Forests, 2017, 8, 401.	2.1	3
74	Biomass Estimation Using 3D Data from Unmanned Aerial Vehicle Imagery in a Tropical Woodland. Remote Sensing, 2016, 8, 968.	4.0	86
75	Above- and Belowground Biomass Models for Trees in the Miombo Woodlands of Malawi. Forests, 2016, 7, 38.	2.1	47
76	Predicting Attributes of Regeneration Forests Using Airborne Laser Scanning. Canadian Journal of Remote Sensing, 2016, 42, 541-553.	2.4	15
77	Effects of site productivity on forest harvest scheduling subject to green-up and maximum area restrictions. Scandinavian Journal of Forest Research, 2016, 31, 507-516.	1.4	11
78	Can airborne laser scanning assist in mapping and monitoring natural forests?. Forest Ecology and Management, 2016, 369, 116-125.	3.2	18
79	Scale effects in survey estimates of proportions and quantiles of per unit area attributes. Forest Ecology and Management, 2016, 364, 122-129.	3.2	10
80	Simulation-based assessment of sampling strategies for large-area biomass estimation using wall-to-wall and partial coverage airborne laser scanning surveys. Remote Sensing of Environment, 2016, 176, 328-340.	11.0	16
81	Model-assisted forest inventory with parametric, semiparametric, and nonparametric models. Canadian Journal of Forest Research, 2016, 46, 855-868.	1.7	40
82	Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data. Carbon Balance and Management, 2016, 11, 13.	3.2	53
83	Large-scale estimation of aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data. Remote Sensing of Environment, 2016, 186, 626-636.	11.0	26
84	Using genetic algorithms to optimize k-Nearest Neighbors configurations for use with airborne laser scanning data. Remote Sensing of Environment, 2016, 184, 387-395.	11.0	14
85	A poststratified ratio estimator for model-assisted biomass estimation in sample-based airborne laser scanning surveys. Canadian Journal of Forest Research, 2016, 46, 1386-1395.	1.7	8
86	The effects of temporal differences between map and ground data on map-assisted estimates of forest area and biomass. Annals of Forest Science, 2016, 73, 839-847.	2.0	12
87	Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: A comparison of estimated precision. Remote Sensing of Environment, 2016, 175, 282-300.	11.0	77
88	Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass. Remote Sensing of Environment, 2016, 173, 98-108.	11.0	58
89	How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?. Ecological Modelling, 2016, 328, 108-118.	2.5	67
90	Predicting the occurrence of large-diameter trees using airborne laser scanning. Canadian Journal of Forest Research, 2016, 46, 461-469.	1.7	9

#	Article	IF	CITATIONS
91	Modelling aboveground forest biomass using airborne laser scanner data in the miombo woodlands of Tanzania. Carbon Balance and Management, 2015, 10, 28.	3.2	24
92	Modeling Aboveground Biomass in Dense Tropical Submontane Rainforest Using Airborne Laser Scanner Data. Remote Sensing, 2015, 7, 788-807.	4.0	65
93	Effects of Pulse Density on Digital Terrain Models and Canopy Metrics Using Airborne Laser Scanning in a Tropical Rainforest. Remote Sensing, 2015, 7, 8453-8468.	4.0	35
94	Inventory of Small Forest Areas Using an Unmanned Aerial System. Remote Sensing, 2015, 7, 9632-9654.	4.0	269
95	Relative Efficiency of ALS and InSAR for Biomass Estimation in a Tanzanian Rainforest. Remote Sensing, 2015, 7, 9865-9885.	4.0	20
96	Semi-supervised SVM for individual tree crown species classification. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 110, 77-87.	11.1	51
97	Comparing biophysical forest characteristics estimated from photogrammetric matching of aerial images and airborne laser scanning data. Scandinavian Journal of Forest Research, 2015, 30, 73-86.	1.4	82
98	The effects of field plot size on model-assisted estimation of aboveground biomass change using multitemporal interferometric SAR and airborne laser scanning data. Remote Sensing of Environment, 2015, 168, 252-264.	11.0	49
99	Monitoring forest carbon in a Tanzanian woodland using interferometric SAR: a novel methodology for REDD+. Carbon Balance and Management, 2015, 10, 14.	3.2	21
100	Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data. Remote Sensing of Environment, 2015, 164, 36-42.	11.0	74
101	Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. Carbon Balance and Management, 2015, 10, 10.	3.2	59
102	Optimizing the k-Nearest Neighbors technique for estimating forest aboveground biomass using airborne laser scanning data. Remote Sensing of Environment, 2015, 163, 13-22.	11.0	48
103	Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania. Carbon Balance and Management, 2015, 10, 18.	3.2	27
104	Assessing forest inventory information obtained from different inventory approaches and remote sensing data sources. Annals of Forest Science, 2015, 72, 33-45.	2.0	46
105	Estimating Single-Tree Crown Biomass of Norway Spruce by Airborne Laser Scanning: A Comparison of Methods with and without the Use of Terrestrial Laser Scanning to Obtain the Ground Reference Data. Forests, 2014, 5, 384-403.	2.1	37
106	Improving Classification of Airborne Laser Scanning Echoes in the Forest-Tundra Ecotone Using Geostatistical and Statistical Measures. Remote Sensing, 2014, 6, 4582-4599.	4.0	7
107	Automatic Detection of Small Single Trees in the Forest-Tundra Ecotone Using Airborne Laser Scanning. Remote Sensing, 2014, 6, 10152-10170.	4.0	10
108	Improving broad scale forage mapping and habitat selection analyses with airborne laser scanning: the case of moose. Ecosphere, 2014, 5, art144.	2.2	20

#	Article	IF	CITATIONS
109	Modelling bird richness and bird species presence in a boreal forest reserve using airborne laser-scanning and aerial images. Bird Study, 2014, 61, 204-219.	1.0	17
110	Living and dying in a multiâ€predator landscape of fear: roe deer are squeezed by contrasting pattern of predation risk imposed by lynx and humans. Oikos, 2014, 123, 641-651.	2.7	154
111	Geo-referencing forest field plots by co-registration of terrestrial and airborne laser scanning data. International Journal of Remote Sensing, 2014, 35, 3135-3149.	2.9	44
112	Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sensing of Environment, 2014, 140, 306-317.	11.0	222
113	Cost-Sensitive Active Learning With Lookahead: Optimizing Field Surveys for Remote Sensing Data Classification. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 6652-6664.	6.3	39
114	Estimation for inaccessible and non-sampled forest areas using model-based inference and remotely sensed auxiliary information. Remote Sensing of Environment, 2014, 154, 226-233.	11.0	26
115	Deriving airborne laser scanning based computational canopy volume for forest biomass and allometry studies. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96, 57-66.	11.1	27
116	Forest biomass change estimated from height change in interferometric SAR height models. Carbon Balance and Management, 2014, 9, 5.	3.2	48
117	Unsupervised Selection of Training Samples for Tree Species Classification Using Hyperspectral Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3560-3569.	4.9	6
118	An Estimator of Variance for Two-Stage Ratio Regression Estimators. Forest Science, 2014, 60, 663-676.	1.0	11
119	Valuation of Airborne Laser Scanning Based Forest Information. Managing Forest Ecosystems, 2014, , 315-331.	0.9	3
120	On the evaluation of competition indices – The problem of overlapping samples. Forest Ecology and Management, 2013, 310, 120-133.	3.2	11
121	Comparison of precision of biomass estimates in regional field sample surveys and airborne LiDAR-assisted surveys in Hedmark County, Norway. Remote Sensing of Environment, 2013, 130, 108-120.	11.0	88
122	A simulation approach for accuracy assessment of two-phase post-stratified estimation in large-area LiDAR biomass surveys. Remote Sensing of Environment, 2013, 133, 210-224.	11.0	53
123	Interpreting cultural remains in airborne laser scanning generated digital terrain models: effects of size and shape on detection success rates. Journal of Archaeological Science, 2013, 40, 4688-4700.	2.4	57
124	Estimating single-tree branch biomass of Norway spruce by airborne laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79, 147-156.	11.1	26
125	Tree Species Classification in Boreal Forests With Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 2632-2645.	6.3	278
126	Inference for lidar-assisted estimation of forest growing stock volume. Remote Sensing of Environment, 2013, 128, 268-275.	11.0	147

#	Article	IF	CITATIONS
127	Model-assisted estimation of change in forest biomass over an 11year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide "activity data― Remote Sensing of Environment, 2013, 128, 299-314.	11.0	106
128	Characterizing forest species composition using multiple remote sensing data sources and inventory approaches. Scandinavian Journal of Forest Research, 2013, 28, 677-688.	1.4	65
129	Classifying tree and nontree echoes from airborne laser scanning in the forest–tundra ecotone. Canadian Journal of Remote Sensing, 2013, 38, 655-666.	2.4	13
130	Optimizing the ground sample collection with cost-sensitive active learning for tree species classification using hyperspectral images. , 2013, , .		2
131	Unsupervised selection of training plots and trees for tree species classification. , 2013, , .		0
132	Model-based inference for <i>k</i> -nearest neighbours predictions using a canonical vine copula. Scandinavian Journal of Forest Research, 2013, 28, 266-281.	1.4	8
133	Accuracy and Precision for Remote Sensing Applications of Nonlinear Model-Based Inference. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 27-34.	4.9	19
134	Estimating single-tree branch biomass of Norway spruce with terrestrial laser scanning using voxel-based and crown dimension features. Scandinavian Journal of Forest Research, 2013, 28, 456-469.	1.4	48
135	Laser-assisted selection of field plots for an area-based forest inventory. Silva Fennica, 2013, 47, .	1.3	36
136	Combining ecological and economic modelling in analysing a pest invasion contingency plan – The case of pine wood nematode in Norway. Scandinavian Journal of Forest Research, 2012, 27, 337-349.	1.4	10
137	Optimizing management regimes for carbon storage and other benefits in uneven-aged stands dominated by Norway spruce, with a derivation of the economic supply of carbon storage. Scandinavian Journal of Forest Research, 2012, 27, 460-473.	1.4	34
138	Single tree detection in heterogeneous boreal forests using airborne laser scanning and area-based stem number estimates. International Journal of Remote Sensing, 2012, 33, 5171-5193.	2.9	95
139	Simultaneously acquired airborne laser scanning and multispectral imagery for individual tree species identification. Canadian Journal of Remote Sensing, 2012, 38, 125-138.	2.4	58
140	Improving k-nearest neighbor predictions in forest inventories by combining high and low density airborne laser scanning data. Remote Sensing of Environment, 2012, 117, 358-365.	11.0	39
141	Subalpine zone delineation using LiDAR and Landsat imagery. Remote Sensing of Environment, 2012, 119, 11-20.	11.0	27
142	Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning. Remote Sensing of Environment, 2012, 123, 443-456.	11.0	102
143	Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment, 2012, 121, 196-209.	11.0	553
144	Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach. Remote Sensing of Environment, 2012, 123, 579-592.	11.0	75

#	Article	IF	CITATIONS
145	Deriving individual tree competition indices from airborne laser scanning. Forest Ecology and Management, 2012, 280, 150-165.	3.2	25
146	Biodiversity protection and economics in long term boreal forest management — A detailed case for the valuation of protection measures. Forest Policy and Economics, 2012, 15, 12-21.	3.4	15
147	Post-stratified estimation of forest area and growing stock volume using lidar-based stratifications. Remote Sensing of Environment, 2012, 125, 157-166.	11.0	69
148	Estimating potential logging residues in a boreal forest by airborne laser scanning. Biomass and Bioenergy, 2012, 36, 356-365.	5.7	15
149	Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time Canadian Journal of Forest Research, 2011, 41, 96-107.	1.7	147
150	Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time Canadian Journal of Forest Research, 2011, 41, 83-95.	1.7	139
151	Modeling forest songbird species richness using LiDAR-derived measures of forest structure. Remote Sensing of Environment, 2011, 115, 2823-2835.	11.0	92
152	Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area. Remote Sensing of Environment, 2011, 115, 3599-3614.	11.0	131
153	Detection of small single trees in the forest–tundra ecotone using height values from airborne laser scanning. Canadian Journal of Remote Sensing, 2011, 37, 264-274.	2.4	35
154	Prediction of Timber Quality Parameters of Forest Stands by Means of Small Footprint Airborne Laser Scanner Data. International Journal of Forest Engineering, 2011, 22, 14-23.	0.8	10
155	Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sensing of Environment, 2010, 114, 911-924.	11.0	201
156	Modelling tree diameter from airborne laser scanning derived variables: A comparison of spatial statistical models. Remote Sensing of Environment, 2010, 114, 1277-1285.	11.0	81
157	Estimating spruce and pine biomass with interferometric X-band SAR. Remote Sensing of Environment, 2010, 114, 2353-2360.	11.0	102
158	Estimating Quebec provincial forest resources using ICESat/GLAS. Canadian Journal of Forest Research, 2009, 39, 862-881.	1.7	66
159	Non-parametric prediction of diameter distributions using airborne laser scanner data. Scandinavian Journal of Forest Research, 2009, 24, 541-553.	1.4	51
160	A forest optimisation model including carbon flows: Application to a forest in Norway. Forest Ecology and Management, 2009, 258, 579-589.	3.2	34
161	Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data. Canadian Journal of Forest Research, 2009, 39, 1036-1052.	1.7	109
162	Improved estimates of forest vegetation structure and biomass with a LiDARâ€optimized sampling design. Journal of Geophysical Research, 2009, 114, .	3.3	81

#	Article	IF	CITATIONS
163	Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sensing of Environment, 2008, 112, 3079-3090.	11.0	288
164	Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data. Canadian Journal of Forest Research, 2008, 38, 1095-1109.	1.7	165
165	T: A forest simulator for bioeconomic analyses based on models for individual trees. Scandinavian Journal of Forest Research, 2008, 23, 250-265.	1.4	21
166	Predicting the growth of stands of trees of mixed species and size: A matrix model for Norway. Scandinavian Journal of Forest Research, 2008, 23, 167-178.	1.4	74
167	Regional Forest Inventory using an Airborne Profiling LiDAR(<special issue="">Silvilaser). Journal of Forest Planning, 2008, 13, 287-294.</special>	0.1	18
168	Comparing regression methods in estimation of biophysical properties of forest stands from two different inventories using laser scanner data. Remote Sensing of Environment, 2005, 94, 541-553.	11.0	142
169	Estimating forest growth using canopy metrics derived from airborne laser scanner data. Remote Sensing of Environment, 2005, 96, 453-465.	11.0	153
170	Weibull and percentile models for lidar-based estimation of basal area distribution. Scandinavian Journal of Forest Research, 2005, 20, 490-502.	1.4	70
171	Estimation of diameter and basal area distributions in coniferous forest by means of airborne laser scanner data. Scandinavian Journal of Forest Research, 2004, 19, 529-542.	1.4	126
172	Comparing stand inventories for large areas based on photo-interpretation and laser scanning by means of cost-plus-loss analyses. Scandinavian Journal of Forest Research, 2004, 19, 512-523.	1.4	114
173	Laser scanning of forest resources: the nordic experience. Scandinavian Journal of Forest Research, 2004, 19, 482-499.	1.4	386
174	Modeling and predicting aboveground biomass change in young forest using multi-temporal airborne laser scanner data. Scandinavian Journal of Forest Research, 0, , 1-12.	1.4	16