
Vera L Maria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2553185/publications.pdf Version: 2024-02-01

VEDAL MADIA

#	Article	IF	CITATIONS
1	The role of nanoplastics on the toxicity of the herbicide phenmedipham, using Danio rerio embryos as model organisms. Environmental Pollution, 2022, 303, 119166.	7.5	12
2	Co-Exposure of Nanopolystyrene and Other Environmental Contaminants—Their Toxic Effects on the Survival and Reproduction of Enchytraeus crypticus. Toxics, 2022, 10, 193.	3.7	4
3	Single and Mixture Toxicity of Boron and Vanadium Nanoparticles in the Soil Annelid Enchytraeus crypticus: A Multi-Biomarker Approach. Nanomaterials, 2022, 12, 1478.	4.1	2
4	Assessment of diphenhydramine toxicity – Is its mode of action conserved between human and zebrafish?. Environment International, 2022, 164, 107263.	10.0	9
5	Polystyrene Nanoplastics Can Alter the Toxicological Effects of Simvastatin on Danio rerio. Toxics, 2021, 9, 44.	3.7	10
6	Environmental Hazards of Boron and Vanadium Nanoparticles in the Terrestrial Ecosystem—A Case Study with Enchytraeus crypticus. Nanomaterials, 2021, 11, 1937.	4.1	12
7	ls the Synthetic Fungicide Fosetyl-Al Safe for the Ecotoxicological Models Danio rerio and Enchytraeus crypticus?. Applied Sciences (Switzerland), 2021, 11, 7209.	2.5	9
8	Toxicity of boron and vanadium nanoparticles on Danio rerio embryos – Phenotypical, biochemical, and behavioral alterations. Aquatic Toxicology, 2021, 238, 105930.	4.0	12
9	Multiomics assessment in Enchytraeus crypticus exposed to Ag nanomaterials (Ag NM300K) and ions (AgNO3) – Metabolomics, proteomics (& transcriptomics). Environmental Pollution, 2021, 286, 117571.	7.5	14
10	How Can Nanoplastics Affect the Survival, Reproduction, and Behaviour of the Soil Model Enchytraeus crypticus?. Applied Sciences (Switzerland), 2020, 10, 7674.	2.5	5
11	Effects of Amorphous Silica Nanopowders on the Avoidance Behavior of Five Soil Species—A Screening Study. Nanomaterials, 2020, 10, 402.	4.1	15
12	Exposure of Folsomia candida (Willem 1902) to teflubenzuron over three generations – Increase of toxicity in the third generation. Applied Soil Ecology, 2019, 134, 8-14.	4.3	15
13	Multigenerational exposure of Folsomia candida to ivermectin – Using avoidance, survival, reproduction, size and cellular markers as endpoints. Geoderma, 2019, 337, 273-279.	5.1	25
14	Multigenerational exposure of Folsomia candida to silver: Effect of different contamination scenarios (continuous versus pulsed and recovery). Science of the Total Environment, 2018, 631-632, 326-333.	8.0	13
15	Silver (nano)materials cause genotoxicity in Enchytraeus crypticus , as determined by the comet assay. Environmental Toxicology and Chemistry, 2018, 37, 184-191.	4.3	18
16	Fate and Effect of Nano Tungsten Carbide Cobalt (WCCo) in the Soil Environment: Observing a Nanoparticle Specific Toxicity in <i>Enchytraeus crypticus</i> . Environmental Science & Technology, 2018, 52, 11394-11401.	10.0	25
17	The <i>Enchytraeus crypticus</i> stress metabolome – CuO NM case study. Nanotoxicology, 2018, 12, 766-780.	3.0	11
18	The Proteome of <i>Enchytraeus crypticus</i> —Exposure to CuO Nanomaterial and CuCl ₂ —in Pursue of a Mechanistic Interpretation. Proteomics, 2018, 18, e1800091.	2.2	13

VERA L MARIA

#	Article	IF	CITATIONS
19	Transcriptomic effects of the non-steroidal anti-inflammatory drug Ibuprofen in the marine bivalve Mytilus galloprovincialis Lam Marine Environmental Research, 2016, 119, 31-39.	2.5	18
20	Oxidative Stress Mechanisms Caused by Ag Nanoparticles (NM300K) are Different from Those of AgNO3: Effects in the Soil Invertebrate Enchytraeus Crypticus. International Journal of Environmental Research and Public Health, 2015, 12, 9589-9602.	2.6	53
21	Ag Nanoparticles (Ag NM300K) in the Terrestrial Environment: Effects at Population and Cellular Level in Folsomia candida (Collembola). International Journal of Environmental Research and Public Health, 2015, 12, 12530-12542.	2.6	38
22	Gla-Rich Protein Is a Potential New Vitamin K Target in Cancer: Evidences for a Direct GRP-Mineral Interaction. BioMed Research International, 2014, 2014, 1-14.	1.9	29
23	Oxidative stress biomarkers and metallothionein in Folsomia candida - responses to Cu and Cd. Environmental Research, 2014, 133, 164-169.	7.5	45
24	Detection of emerging contaminants (UV filters, UV stabilizers and musks) in marine mussels from Portuguese coast by QuEChERS extraction and GC–MS/MS. Science of the Total Environment, 2014, 493, 162-169.	8.0	127
25	Impact of benzo(a)pyrene, Cu and their mixture on the proteomic response of Mytilus galloprovincialis. Aquatic Toxicology, 2013, 144-145, 284-295.	4.0	38
26	Comparison of metal accumulation between â€~Artificial Mussel' and natural mussels (Mytilus) Tj ETQq0 0 C) rgBT/Ove	erlock 10 Tf 5
27	Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo(a)pyrene and copper. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2011, 154, 56-63.	2.6	81
28	Antioxidant Responses Versus DNA Damage and Lipid Peroxidation in Golden Grey Mullet Liver: A Field Study at Ria de Aveiro (Portugal). Archives of Environmental Contamination and Toxicology, 2010, 59, 454-463.	4.1	23
29	Monitoring pollution of coastal lagoon using Liza aurata kidney oxidative stress and genetic endpoints: an integrated biomarker approach. Ecotoxicology, 2010, 19, 643-653.	2.4	30
30	Seasonal Liza aurata tissue-specific DNA integrity in a multi-contaminated coastal lagoon (Ria de) Tj ETQq0 0 0 r	gBŢ /Over	ock 10 Tf 50
31	Protein expression profiles in Mytilus galloprovincialis exposed to a combination of contaminants. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2010, 157, S46.	1.8	0
32	Evaluation of oxidative DNA lesions in plasma and nuclear abnormalities in erythrocytes of wild fish (Liza aurata) as an integrated approach to genotoxicity assessment. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 703, 83-89.	1.7	36
33	Hepatic metallothionein concentrations in the golden grey mullet (Liza aurata) – Relationship with environmental metal concentrations in a metal-contaminated coastal system in Portugal. Marine Environmental Research, 2010, 69, 227-233.	2.5	32
34	Golden grey mullet and sea bass oxidative DNA damage and clastogenic/aneugenic responses in a contaminated coastal lagoon. Ecotoxicology and Environmental Safety, 2010, 73, 1907-1913.	6.0	14
35	Biomarkers of damage and protection in Mytilus galloprovincialis cross transplanted in Ria Formosa Lagoon (Portugal). Ecotoxicology, 2009, 18, 1018-1028.	2.4	18
36	Juvenile sea bass (Dicentrarchus labrax L.) enzymatic and non-enzymatic antioxidant responses following 17β-estradiol exposure. Ecotoxicology, 2009, 18, 974-982.	2.4	19

Vera L Maria

#	Article	IF	CITATIONS
37	Contaminant effects in shore crabs (Carcinus maenas) from Ria Formosa Lagoon. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009, 150, 196-208.	2.6	9
38	Wild juvenile Dicentrarchus labrax L. liver antioxidant and damage responses at Aveiro Lagoon, Portugal. Ecotoxicology and Environmental Safety, 2009, 72, 1861-1870.	6.0	44
39	Contamination assessment of a coastal lagoon (Ria de Aveiro, Portugal) using defence and damage biochemical indicators in gill of Liza aurata – An integrated biomarker approach. Environmental Pollution, 2009, 157, 959-967.	7.5	135
40	DNA damage and lipid peroxidation vs. protection responses in the gill of Dicentrarchus labrax L. from a contaminated coastal lagoon (Ria de Aveiro, Portugal). Science of the Total Environment, 2008, 406, 298-307.	8.0	42
41	Modulatory role of copper on β-naphthoflavone-induced DNA damage in European eel (Anguilla) Tj ETQq1 1 0.784	4314 rgBT 6.0	Dverlock
42	Juvenile sea bass (Dicentrarchus labrax L.) DNA strand breaks and lipid peroxidation response following 17l²-estradiol two mode of exposures. Environment International, 2008, 34, 23-29.	10.0	19
43	Anguilla anguilla L. Genotoxic responses after in situ exposure to freshwater wetland (Pateira de) Tj ETQq1 1 0.784	4314 rgBT 10.0	- /Overlock
44	Oxidative stress and genotoxic effects in gill and kidney of Anguilla anguilla L. exposed to chromium with or without pre-exposure to β-naphthoflavone. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2006, 608, 16-28.	1.7	151
45	Anguilla anguilla L. liver EROD induction and genotoxic responses after retene exposure. Ecotoxicology and Environmental Safety, 2005, 61, 230-238.	6.0	15
46	Anguilla anguilla L. genotoxic and liver biotransformation responses to abietic acid exposure. Ecotoxicology and Environmental Safety, 2004, 58, 202-210.	6.0	2
47	Genotoxic and biochemical responses in caged eel (Anguilla anguilla L.) after short-term exposure to harbour waters. Environment International, 2004, 29, 923-929.	10.0	19
48	Anguilla anguilla L. plasma cortisol, lactate and glucose responses to abietic acid, dehydroabietic acid and retene. Environment International, 2004, 29, 995-1000.	10.0	27
49	Genotoxic and hepatic biotransformation responses induced by the overflow of pulp mill and secondary-treated effluents on Anguilla anguilla L Ecotoxicology and Environmental Safety, 2003, 55, 126-137.	6.0	20
50	Benzo[a]pyrene and β-Naphthoflavone Mutagenic Activation by European Eel (Anguilla anguilla L.) S9 Liver Fraction. Ecotoxicology and Environmental Safety, 2002, 53, 81-85.	6.0	13
51	Anguilla anguilla L. Biochemical and Genotoxic Responses to Benzo[a]pyrene. Ecotoxicology and Environmental Safety, 2002, 53, 86-92.	6.0	45