
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2551888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supramolecular Hydrogels with Tunable Swelling by Host Complexation with Cyclobis(paraquat- <i>p</i> -phenylene). Macromolecules, 2021, 54, 1926-1933.	4.8	4
2	Molecular mechanism of abnormally large nonsoftening deformation in a tough hydrogel. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
3	Stimuli-Responsive Toughening of Hydrogels. Chemistry of Materials, 2021, 33, 7633-7656.	6.7	68
4	Hydrophilicityâ€Hydrophobicity Transformation, Thermoresponsive Morphomechanics, and Crack Multifurcation Revealed by AlEgens in Mechanically Strong Hydrogels. Advanced Materials, 2021, 33, e2101500.	21.0	46
5	Dual Responsive Regulation of Host–Guest Complexation in Aqueous Media to Control Partial Release of the Host. Chemistry - A European Journal, 2020, 26, 1292-1297.	3.3	8
6	Topology-Specific Injectable Sticky Hydrogels. Macromolecules, 2020, 53, 9779-9792.	4.8	12
7	Coacervate-Based Underwater Adhesives in Physiological Conditions. ACS Applied Polymer Materials, 2020, 2, 3397-3410.	4.4	21
8	Responsive Adsorption of N-Isopropylacrylamide Based Copolymers on Polymer Brushes. Polymers, 2020, 12, 153.	4.5	12
9	Hybrid Complex Coacervate. Polymers, 2020, 12, 320.	4.5	8
10	Tuning the Interactions in Multiresponsive Complex Coacervate-Based Underwater Adhesives. International Journal of Molecular Sciences, 2020, 21, 100.	4.1	14
11	Underwater Adhesion of Multiresponsive Complex Coacervates. Advanced Materials Interfaces, 2020, 7, 1901785.	3.7	40
12	Complex Coacervation: Underwater Adhesion of Multiresponsive Complex Coacervates (Adv. Mater.) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf
13	Thermally Triggered Injectable Underwater Adhesives. Macromolecular Rapid Communications, 2020, 41, e1900653.	3.9	16
14	Enhancement of the Adhesive Properties by Optimizing the Water Content in PNIPAM-Functionalized Complex Coacervates. ACS Applied Polymer Materials, 2020, 2, 1722-1730.	4.4	23
15	Relaxation Dynamics and Underlying Mechanism of a Thermally Reversible Gel from Symmetric Triblock Copolymer. Macromolecules, 2019, 52, 8651-8661.	4.8	12
16	Effect of responsive graft length on mechanical toughening and transparency in microphase-separated hydrogels. Soft Matter, 2019, 15, 8653-8666.	2.7	8
17	Hydrophobic Hydrogels: Hydrophobic Hydrogels with Fruit‣ike Structure and Functions (Adv. Mater.) Tj ETQq1	1 0.78431 21.0	4 ₃ rgBT /Ove

18 Hydrophobic Hydrogels with Fruitâ€Like Structure and Functions. Advanced Materials, 2019, 31, e1900702. 21.0 64

#	Article	IF	CITATIONS
19	From Molecular Electrostatic Interactions and Hydrogel Architecture to Macroscopic Underwater Adherence. Macromolecules, 2019, 52, 3852-3862.	4.8	13
20	Thermoresponsive Complex Coacervateâ€Based Underwater Adhesive. Advanced Materials, 2019, 31, e1808179.	21.0	137
21	Cold and Hot Gelling of Alginate- <i>graft</i> -PNIPAM: a Schizophrenic Behavior Induced by Potassium Salts. Biomacromolecules, 2018, 19, 576-587.	5.4	22
22	Equilibrium and Out-of-Equilibrium Adherence of Hydrogels against Polymer Brushes. Macromolecules, 2018, 51, 7556-7566.	4.8	18
23	Hydrogels with Dual Thermoresponsive Mechanical Performance. Macromolecular Rapid Communications, 2017, 38, 1700287.	3.9	24
24	Supramolecular polymer hydrogels induced by host–guest interactions with di-[cyclobis(paraquat-p-phenylene)] cross-linkers: from molecular complexation to viscoelastic properties. Soft Matter, 2017, 13, 5269-5282.	2.7	10
25	Thermoresponsive Toughening with Crack Bifurcation in Phaseâ€6eparated Hydrogels under Isochoric Conditions. Advanced Materials, 2016, 28, 5857-5864.	21.0	91
26	Thermoresponsive Toughening in LCST-Type Hydrogels: Comparison between Semi-Interpenetrated and Grafted Networks. Macromolecules, 2016, 49, 9568-9577.	4.8	36
27	Thermoresponsive Toughening in LCST-Type Hydrogels with Opposite Topology: From Structure to Fracture Properties. Macromolecules, 2016, 49, 4295-4306.	4.8	49
28	Recognitionâ€Mediated Hydrogel Swelling Controlled by Interaction with a Negative Thermoresponsive LCST Polymer. Angewandte Chemie - International Edition, 2016, 55, 13974-13978.	13.8	34
29	Influence of topology of LCST-based graft copolymers on responsive assembling in aqueous media. Polymer, 2015, 60, 164-175.	3.8	43
30	Structure investigation of nanohybrid PDMA/silica hydrogels at rest and under uniaxial deformation. Soft Matter, 2015, 11, 5905-5917.	2.7	21
31	Synthesis and characterization of PEPO grafted carboxymethyl guar and carboxymethyl tamarind as new thermo-associating polymers. Carbohydrate Polymers, 2015, 117, 331-338.	10.2	40
32	Nanoparticle solutions as adhesives for gels and biological tissues. Nature, 2014, 505, 382-385.	27.8	642
33	Design and Viscoelastic Properties of <scp>PDMA</scp> / <scp>S</scp> ilica Assemblies in Aqueous Media. Macromolecular Symposia, 2014, 337, 58-73.	0.7	6
34	Probing pH-Responsive Interactions between Polymer Brushes and Hydrogels by Neutron Reflectivity. Langmuir, 2014, 30, 9700-9706.	3.5	8
35	Dynamics of Hybrid Polyacrylamide Hydrogels Containing Silica Nanoparticles Studied by Dynamic Light Scattering. Macromolecules, 2013, 46, 4567-4574.	4.8	38
36	Time Dependence of Dissipative and Recovery Processes in Nanohybrid Hydrogels. Macromolecules, 2013, 46, 4095-4104.	4.8	114

#	Article	IF	CITATIONS
37	Dynamics of Hybrid Poly(acrylamide- <i>co</i> - <i>N</i> , <i>N</i> -dimethylacrylamide) Hydrogels Containing Silica Nanoparticles Studied by Dynamic Light Scattering. Macromolecules, 2013, 46, 5329-5336.	4.8	20
38	Thermodynamic behavior of hydrophobically modified polyacrylamide containing random distribution of hydrophobes: Experimental and theoretical investigations. Polymer, 2013, 54, 2676-2689.	3.8	15
39	pHâ€Responsive Swelling of Poly(acrylic acid) Brushes Synthesized by the Grafting Onto Route. Macromolecular Chemistry and Physics, 2013, 214, 2882-2890.	2.2	20
40	Structure of Surfaces and Interfaces of Poly(N,N-dimethylacrylamide) Hydrogels. Langmuir, 2012, 28, 12282-12287.	3.5	20
41	Cyclodextrin Polymer Nanoassemblies: Strategies for Stability Improvement. Biomacromolecules, 2012, 13, 528-534.	5.4	21
42	Reversible adhesion between a hydrogel and a polymer brush. Soft Matter, 2012, 8, 8184.	2.7	90
43	pH/Temperature control of interpolymer complexation between poly(acrylic acid) and weak polybases in aqueous solutions. Polymer, 2012, 53, 379-385.	3.8	25
44	Synthesis and Characterization of Poly(acrylic acid) Brushes: "Graftingâ€Onto―Route. Macromolecular Chemistry and Physics, 2012, 213, 293-300.	2.2	13
45	Effect of polymer–particle interaction on the fracture toughness of silica filled hydrogels. Soft Matter, 2011, 7, 6578.	2.7	46
46	Thermoresponsive Interpolyelectrolyte Complexation: Application to Macromolecular Assemblies. Macromolecules, 2011, 44, 8185-8194.	4.8	20
47	Large Strain and Fracture Properties of Poly(dimethylacrylamide)/Silica Hybrid Hydrogels. Macromolecules, 2010, 43, 2554-2563.	4.8	265
48	Nano-hybrid self-crosslinked PDMA/silica hydrogels. Soft Matter, 2010, 6, 3619.	2.7	119
49	pH- and Thermo-responsive Polymer Assemblies in Aqueous Solution. , 2010, , 19-22.		1
50	Synthesis and self assembly processes of aqueous thermoresponsive hybrid formulations. Soft Matter, 2010, 6, 2178.	2.7	9
51	Large strain behaviour of nanostructured polyelectrolyte hydrogels. Polymer, 2009, 50, 481-490.	3.8	47
52	Synthesis and self-assembling properties of α,ï‰-hydroxy-poly(ethylene oxide) end-capped with 1-isocyanato-3-pentadecylcyclohexane. Polymer, 2008, 49, 4635-4646.	3.8	11
53	Strain induced clustering in polyelectrolyte hydrogels. Soft Matter, 2008, 4, 1011.	2.7	41
54	Responsive Hybrid Self-Assemblies in Aqueous Media. Langmuir, 2007, 23, 147-158.	3.5	75

#	Article	IF	CITATIONS
55	Synthesis and Viscoelastic Properties of Hydrophobically Modified Hydrogels. Macromolecular Symposia, 2007, 256, 189-194.	0.7	14
56	Synthesis of graft polyacrylamide with responsive self-assembling properties in aqueous media. Polymer, 2007, 48, 7098-7112.	3.8	62
57	Synthesis and Rheological Behavior of New Hydrophobically Modified Hydrogels with Tunable Properties. Macromolecules, 2006, 39, 8128-8139.	4.8	84
58	Hybrid thickeners in aqueous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 278, 26-32.	4.7	37
59	Hydrophobically Modified Poly(acrylic acid) Using 3-Pentadecylcyclohexylamine: Synthesis and Rheology. Macromolecular Chemistry and Physics, 2005, 206, 464-472.	2.2	21
60	Thermoreversible Behavior of Associating Polymer Solutions:Â Thermothinning versus Thermothickening. Macromolecules, 2005, 38, 8512-8521.	4.8	74
61	Hydrophobically Modified Dimethylacrylamide Synthesis and Rheological Behavior. Macromolecules, 2005, 38, 2981-2989.	4.8	63
62	Thermally Induced Gelation of Poly(acrylamide) Grafted with Poly(N-isopropylacrylamide):Â A Small-Angle Neutron Scattering Study. Macromolecules, 2004, 37, 5682-5691.	4.8	33
63	New block-copolymer thermoassociating matrices for DNA sequencing: Effect of molecular structure on rheology and resolution. Electrophoresis, 2001, 22, 720-728.	2.4	67
64	Synthesis and characterization of positively charged amphiphilic water soluble polymers based on poly(N -isopropylacrylamide). Polymer, 2001, 42, 6329-6337.	3.8	37
65	Thermoassociative graft copolymers based on poly(N-isopropylacrylamide): Relation between the chemical structure and the rheological properties. Macromolecular Chemistry and Physics, 2000, 201, 858-868.	2.2	47
66	Thermogelation in Aqueous Polymer Solutions. ACS Symposium Series, 2000, , 181-207.	0.5	14
67	Thermoassociative Graft Copolymers:Â NMR Investigation and Comparison with Rheological Behaviour. Journal of Physical Chemistry B, 2000, 104, 9371-9377.	2.6	46
68	Synthesis and thermoassociative properties in aqueous solution of graft copolymers containing poly() Tj ETQq0	0 0 rgBT /	Overlock 10 T
69	Molar mass control of poly(N-isopropylacrylamide) and poly(acrylic acid) in aqueous polymerizations initiated by redox initiators based on persulfates. Macromolecular Chemistry and Physics, 1998, 199, 1387-1392.	2.2	53
70	Swelling of Poly(acrylamide) Gels with Pendant Poly(ethylene oxide) Chains in Solutions of Ionic Surfactant and Salt. Langmuir, 1998, 14, 777-782.	3.5	19
71	pH-Responsive Gels of Hydrophobically Modified Poly(acrylic acid). Macromolecules, 1997, 30, 8278-8285.	4.8	334
72	Swelling of polyacrylamide gels with pendant poly(ethylene oxide) chains in water and in ionic surfactant solutions. Langmuir, 1993, 9, 3324-3326.	3.5	23

#	Article	IF	CITATIONS
73	Solution properties of pectin polysaccharides — III: Molecular size of heterogeneous pectin chains. Calibration and application of SEC to pectin analysis. Carbohydrate Polymers, 1991, 16, 409-432.	10.2	15
74	Solution properties of pectin polysaccharides II. Conformation and molecular size of high galacturonic acid content isolated pectin chains. Carbohydrate Polymers, 1991, 16, 113-135.	10.2	34
75	Mechanism insights in controlling host–guest (de)complexation by thermoresponsive polymer phase transitions. Polymer Chemistry, 0, , .	3.9	1