
Fiorenzo G Omenetto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2551501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silk Embolic Material for Catheterâ€Directed Endovascular Drug Delivery. Advanced Materials, 2022, 34, e2106865.	11.1	19
2	Silkâ^'Fibroin‣upported Palladium Catalyst for Suzukiâ€Miyaura and Ullmann Coupling Reactions of Aryl Chlorides. European Journal of Organic Chemistry, 2022, 2022, .	1.2	10
3	Silk materials at the convergence of science, sustainability, healthcare, and technology. Applied Physics Reviews, 2022, 9, .	5.5	31
4	Silk Embolic Material for Catheterâ€Directed Endovascular Drug Delivery (Adv. Mater. 2/2022). Advanced Materials, 2022, 34, .	11.1	0
5	Dry Spun, Bulkâ€Functionalized rGO Fibers for Textile Integrated Potentiometric Sensors. Advanced Materials Technologies, 2022, 7, .	3.0	6
6	Generation of Complex Tunable Multispectral Signatures with Reconfigurable Proteinâ€Based, Plasmonicâ€Photonic Crystal Hybrid Nanostructures. Small, 2022, 18, e2201036.	5.2	6
7	Nanoporous silk films with capillary action and size-exclusion capacity for sensitive glucose determination in whole blood. Lab on A Chip, 2021, 21, 608-615.	3.1	9
8	Silk Reservoir Implants for Sustained Drug Delivery. ACS Applied Bio Materials, 2021, 4, 869-880.	2.3	8
9	Light-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructures. Nature Communications, 2021, 12, 1651.	5.8	39
10	Functionalized Mouth onformable Interfaces for pH Evaluation of the Oral Cavity. Advanced Science, 2021, 8, e2003416.	5.6	18
11	Bombyx mori Silk Fibroin Regeneration in Solution of Lanthanide Ions: A Systematic Investigation. Frontiers in Bioengineering and Biotechnology, 2021, 9, 653033.	2.0	15
12	Unmixing octopus camouflage by multispectral mapping of Octopus bimaculoides' chromatic elements. Nanophotonics, 2021, 10, 2441-2450.	2.9	4
13	Bioinspired Biomaterial Composite for Allâ€Waterâ€Based Highâ€Performance Adhesives. Advanced Science, 2021, 8, e2004786.	5.6	54
14	Reconfigurable microwave metadevices based on organic electrochemical transistors. Nature Electronics, 2021, 4, 424-428.	13.1	23
15	Stabilization of Salivary Biomarkers. ACS Biomaterials Science and Engineering, 2021, 7, 5451-5473.	2.6	12
16	Demonstration of magnetic and light-controlled actuation of a photomagnetically actuated deformable mirror for wavefront control. Optical Engineering, 2021, 60, .	0.5	0
17	3D Printing of Silk Protein Structures by Aqueous Solventâ€Directed Molecular Assembly. Macromolecular Bioscience, 2020, 20, e1900191.	2.1	42
18	Palladium Supported on Silk Fibroin for Suzuki–Miyaura Cross oupling Reactions. European Journal of Organic Chemistry, 2020, 2020, 6992-6996.	1.2	21

#	Article	IF	CITATIONS
19	Wearable Sensors: Largeâ€5cale Patterning of Reactive Surfaces for Wearable and Environmentally Deployable Sensors (Adv. Mater. 28/2020). Advanced Materials, 2020, 32, 2070213.	11.1	1
20	Proton conduction in inkjet-printed reflectin films. APL Materials, 2020, 8, 101113.	2.2	5
21	Optomechanically Actuated Microcilia for Locally Reconfigurable Surfaces. Advanced Materials, 2020, 32, e2004147.	11.1	24
22	Largeâ€Scale Patterning of Reactive Surfaces for Wearable and Environmentally Deployable Sensors. Advanced Materials, 2020, 32, e2001258.	11.1	37
23	Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14602-14608.	3.3	63
24	Silk Fibroin Processing from CeCl 3 Aqueous Solution: Fibers Regeneration and Doping with Ce(III). Macromolecular Chemistry and Physics, 2020, 221, 2000066.	1.1	9
25	Photonic paper: Multiscale assembly of reflective cellulose sheets in <i>Lunaria annua</i> . Science Advances, 2020, 6, .	4.7	13
26	N-dimensional optics with natural materials. MRS Communications, 2020, 10, 201-214.	0.8	3
27	Inkjet-printed lasing silk text on reusable distributed feedback boards. Optical Materials Express, 2020, 10, 818.	1.6	6
28	Active optics with silk. Nanophotonics, 2020, 10, 137-148.	2.9	15
29	Inkjet Printing of Patterned, Multispectral, and Biocompatible Photonic Crystals. Advanced Materials, 2019, 31, e1901036.	11.1	78
30	3D Printing of Functional Microalgal Silk Structures for Environmental Applications. ACS Biomaterials Science and Engineering, 2019, 5, 4808-4816.	2.6	32
31	Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21361-21368.	3.3	75
32	Hydrogel Gate Graphene Field-Effect Transistors as Multiplexed Biosensors. Nano Letters, 2019, 19, 2620-2626.	4.5	52
33	Hierarchical Opals: Biomaterial-Based "Structured Opals―with Programmable Combination of Diffractive Optical Elements and Photonic Bandgap Effects (Adv. Mater. 5/2019). Advanced Materials, 2019, 31, 1970030.	11.1	0
34	Cutting the Cord: Progress in Untethered Soft Robotics and Actuators. MRS Advances, 2019, 4, 2787-2804.	0.5	7
35	Biomaterialâ€Based "Structured Opals―with Programmable Combination of Diffractive Optical Elements and Photonic Bandgap Effects. Advanced Materials, 2019, 31, e1805312.	11.1	32
36	Coding Cell Micropatterns Through Peptide Inkjet Printing for Arbitrary Biomineralized Architectures. Advanced Functional Materials, 2018, 28, 1800228.	7.8	31

#	Article	IF	CITATIONS
37	Functional, RFâ€Trilayer Sensors for Toothâ€Mounted, Wireless Monitoring of the Oral Cavity and Food Consumption. Advanced Materials, 2018, 30, e1703257.	11.1	146
38	Protein Bricks: 2D and 3D Bioâ€Nanostructures with Shape and Function on Demand. Advanced Materials, 2018, 30, e1705919.	11.1	50
39	Engineering optical defects in biopolymer photonic lattices. Journal of Materials Chemistry C, 2018, 6, 966-971.	2.7	6
40	Highâ€Strength, Durable Allâ€Silk Fibroin Hydrogels with Versatile Processability toward Multifunctional Applications. Advanced Functional Materials, 2018, 28, 1704757.	7.8	133
41	Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces. Advanced Materials, 2018, 30, e1800598.	11.1	98
42	3D freeform printing of silk fibroin. Acta Biomaterialia, 2018, 71, 379-387.	4.1	83
43	Stabilization of RNA Encapsulated in Silk. ACS Biomaterials Science and Engineering, 2018, 4, 1708-1715.	2.6	14
44	Designing the Iridescences of Biopolymers by Assembly of Photonic Crystal Superlattices. Advanced Optical Materials, 2018, 6, 1800066.	3.6	19
45	Design, Fabrication, and Function of Silkâ€Based Nanomaterials. Advanced Functional Materials, 2018, 28, 1805305.	7.8	120
46	Solvent-Free Strategy To Encapsulate Degradable, Implantable Metals in Silk Fibroin. ACS Applied Bio Materials, 2018, 1, 1677-1686.	2.3	3
47	Multispectral Imaging: Multicolor Tâ€Ray Imaging Using Multispectral Metamaterials (Adv. Sci. 7/2018). Advanced Science, 2018, 5, 1870044.	5.6	1
48	Silkworm silk-based materials and devices generated using bio-nanotechnology. Chemical Society Reviews, 2018, 47, 6486-6504.	18.7	324
49	Flexible magnetic composites for light-controlled actuation and interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8119-8124.	3.3	64
50	Bio-Nanostructures: Protein Bricks: 2D and 3D Bio-Nanostructures with Shape and Function on Demand (Adv. Mater. 20/2018). Advanced Materials, 2018, 30, 1870141.	11.1	3
51	Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures. Nature Nanotechnology, 2017, 12, 474-480.	15.6	134
52	Evaluation of Silk Inverse Opals for "Smart―Tissue Culture. ACS Omega, 2017, 2, 470-477.	1.6	13
53	The Use of Functionalized Silk Fibroin Films as a Platform for Optical Diffractionâ€Based Sensing Applications. Advanced Materials, 2017, 29, 1605471.	11.1	127
54	Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with inÂvitro and inÂvivo assessments. Biomaterials, 2017, 117, 105-115.	5.7	189

#	Article	IF	CITATIONS
55	Fabrication of elastomeric silk fibers. Biopolymers, 2017, 107, e23030.	1.2	13
56	Bioinspired stimuli-responsive multilayer film made of silk–titanate nanocomposites. Journal of Materials Chemistry C, 2017, 5, 3924-3931.	2.7	49
57	Photo-induced structural modification of silk gels containing azobenzene side groups. Soft Matter, 2017, 13, 2903-2906.	1.2	14
58	A Biodegradable Thin-Film Magnesium Primary Battery Using Silk Fibroin–Ionic Liquid Polymer Electrolyte. ACS Energy Letters, 2017, 2, 831-836.	8.8	134
59	Gain-Based Mechanism for <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>H</mml:mtext></mml:mrow></mml:math> Sensing Based on Random Lasing. Physical Review Applied, 2017, 7, .	1.5	39
60	Programming function into mechanical forms by directed assembly of silk bulk materials. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 451-456.	3.3	78
61	Silk Fibroin Microneedles for Transdermal Vaccine Delivery. ACS Biomaterials Science and Engineering, 2017, 3, 360-369.	2.6	55
62	The optical properties of regenerated silk fibroin films obtained from different sources. Applied Physics Letters, 2017, 111, .	1.5	44
63	Conformal Silk-Azobenzene Composite for Optically Switchable Diffractive Structures. ACS Applied Materials & Interfaces, 2017, 9, 30951-30957.	4.0	17
64	Biopatterning: Precise Protein Photolithography (P ³): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist (Adv. Sci. 9/2017). Advanced Science, 2017, 4, .	5.6	0
65	Modulation of Multiscale 3D Lattices through Conformational Control: Painting Silk Inverse Opals with Water and Light. Advanced Materials, 2017, 29, 1702769.	11.1	83
66	Enhanced Stabilization in Dried Silk Fibroin Matrices. Biomacromolecules, 2017, 18, 2900-2905.	2.6	11
67	3D Printing of Regenerated Silk Fibroin and Antibody-Containing Microstructures via Multiphoton Lithography. ACS Biomaterials Science and Engineering, 2017, 3, 2064-2075.	2.6	39
68	3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture. PLoS ONE, 2017, 12, e0169504.	1.1	55
69	High-Q silk fibroin whispering gallery microresonator. Optics Express, 2016, 24, 20825.	1.7	50
70	Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses. Advanced Materials, 2016, 28, 2417-2420.	11.1	132
71	Silk Fibroin: Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses (Adv. Mater.) Tj ETQq1 1 0.78	84314 rgB 11.1	T /Overlock 1
72	Bio-functionalized silk hydrogel microfluidic systems. Biomaterials, 2016, 93, 60-70.	5.7	101

#	Article	IF	CITATIONS
73	Evolution of Bioinks and Additive Manufacturing Technologies for 3D Bioprinting. ACS Biomaterials Science and Engineering, 2016, 2, 1662-1678.	2.6	237
74	Eco-friendly photolithography using water-developable pure silk fibroin. RSC Advances, 2016, 6, 39330-39334.	1.7	43
75	Doxorubicin loaded nanodiamond-silk spheres for fluorescence tracking and controlled drug release. Biomedical Optics Express, 2016, 7, 132.	1.5	32
76	Methods and Applications of Multilayer Silk Fibroin Laminates Based on Spatially Controlled Welding in Protein Films. Advanced Functional Materials, 2016, 26, 44-50.	7.8	26
77	Silk-based blood stabilization for diagnostics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5892-5897.	3.3	74
78	Towards the fabrication of biohybrid silk fibroin materials: entrapment and preservation of chloroplast organelles in silk fibroin films. RSC Advances, 2016, 6, 72366-72370.	1.7	7
79	Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing. Biomaterials, 2016, 110, 24-33.	5.7	48
80	Silk Fibroinâ€Carbon Nanotube Composite Electrodes for Flexible Biocatalytic Fuel Cells. Advanced Electronic Materials, 2016, 2, 1600190.	2.6	19
81	Dityrosine Cross-Linking in Designing Biomaterials. ACS Biomaterials Science and Engineering, 2016, 2, 2108-2121.	2.6	121
82	Silk Fibroin as Edible Coating for Perishable Food Preservation. Scientific Reports, 2016, 6, 25263.	1.6	168
83	Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nature Communications, 2016, 7, 13079.	5.8	78
84	Direct Transfer Printing of Water Hydrolyzable Metals onto Silk Fibroin Substrates through Thermalâ€Reflowâ€Based Adhesion. Advanced Materials Interfaces, 2016, 3, 1600094.	1.9	9
85	Evaluation of the Spectral Response of Functionalized Silk Inverse Opals as Colorimetric Immunosensors. ACS Applied Materials & Interfaces, 2016, 8, 16218-16226.	4.0	32
86	Printing of stretchable silk membranes for strain measurements. Lab on A Chip, 2016, 16, 2459-2466.	3.1	99
87	Silkâ€Based Biocompatible Random Lasing. Advanced Optical Materials, 2016, 4, 998-1003.	3.6	90
88	Optimizing Molecular Weight of Lyophilized Silk As a Shelf-Stable Source Material. ACS Biomaterials Science and Engineering, 2016, 2, 595-605.	2.6	25
89	Silk-based stabilization of biomacromolecules. Journal of Controlled Release, 2015, 219, 416-430.	4.8	117
90	Enhanced photoluminescence of Si nanocrystals-doped cellulose nanofibers by plasmonic light scattering. Applied Physics Letters, 2015, 107, .	1.5	18

#	Article	IF	CITATIONS
91	Fabrication of Tunable, Highâ€Refractiveâ€Index Titanate–Silk Nanocomposites on the Micro―and Nanoscale. Advanced Materials, 2015, 27, 6728-6732.	11.1	31
92	Inkjet Printing of Regenerated Silk Fibroin: From Printable Forms to Printable Functions. Advanced Materials, 2015, 27, 4273-4279.	11.1	174
93	Encapsulation of volatile compounds in silk microparticles. Journal of Coatings Technology Research, 2015, 12, 793-799.	1.2	24
94	Biocompatible silk step-index optical waveguides. Biomedical Optics Express, 2015, 6, 4221.	1.5	84
95	Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node. Applied Physics Letters, 2015, 106, .	1.5	28
96	Cashmere-derived keratin for device manufacturing on the micro- and nanoscale. Journal of Materials Chemistry C, 2015, 3, 2783-2787.	2.7	22
97	Fluorescent Nanodiamond Silk Fibroin Spheres: Advanced Nanoscale Bioimaging Tool. ACS Biomaterials Science and Engineering, 2015, 1, 1104-1113.	2.6	37
98	Transient Electronics: Materials for Programmed, Functional Transformation in Transient Electronic Systems (Adv. Mater. 1/2015). Advanced Materials, 2015, 27, 187-187.	11.1	3
99	Polyol-Silk Bioink Formulations as Two-Part Room-Temperature Curable Materials for 3D Printing. ACS Biomaterials Science and Engineering, 2015, 1, 780-788.	2.6	84
100	InÂvivo bioresponses to silk proteins. Biomaterials, 2015, 71, 145-157.	5.7	357
101	In vitro bioengineered model of cortical brain tissue. Nature Protocols, 2015, 10, 1362-1373.	5.5	87
102	Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12052-12057.	3.3	122
103	Transparent, Nanostructured Silk Fibroin Hydrogels with Tunable Mechanical Properties. ACS Biomaterials Science and Engineering, 2015, 1, 964-970.	2.6	58
104	Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets. ACS Applied Materials & Interfaces, 2015, 7, 19870-19875.	4.0	66
105	Silk fibroin hydroxyapatite composite thermal stabilisation of carbonic anhydrase. Journal of Materials Chemistry A, 2015, 3, 19282-19287.	5.2	16
106	Materials for Programmed, Functional Transformation in Transient Electronic Systems. Advanced Materials, 2015, 27, 47-52.	11.1	81
107	Encapsulation of oil in silk fibroin biomaterials. Journal of Applied Polymer Science, 2014, 131, .	1.3	15
108	Silk: A Different Kind of "Fiber Optics― Optics and Photonics News, 2014, 25, 28.	0.4	9

#	Article	IF	CITATIONS
109	Synthesis and characterization of biocompatible nanodiamond-silk hybrid material. Biomedical Optics Express, 2014, 5, 596.	1.5	19
110	Filmâ€Based Implants for Supporting Neuron–Electrode Integrated Interfaces for The Brain. Advanced Functional Materials, 2014, 24, 1938-1948.	7.8	52
111	Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17385-17389.	3.3	281
112	All-water-based electron-beam lithography using silk as a resist. Nature Nanotechnology, 2014, 9, 306-310.	15.6	245
113	Rapid fabrication of silk films with controlled architectures via electrogelation. Journal of Materials Chemistry B, 2014, 2, 4983.	2.9	28
114	Synthesis of Silk Fibroin Micro―and Submicron Spheres Using a Coâ€Flow Capillary Device. Advanced Materials, 2014, 26, 1105-1110.	11.1	68
115	Highly Tunable Elastomeric Silk Biomaterials. Advanced Functional Materials, 2014, 24, 4615-4624.	7.8	338
116	Bioengineered functional brain-like cortical tissue. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13811-13816.	3.3	255
117	25th Anniversary Article: Materials for Highâ€Performance Biodegradable Semiconductor Devices. Advanced Materials, 2014, 26, 1992-2000.	11.1	161
118	Proteinâ€Protein Nanoimprinting of Silk Fibroin Films. Advanced Materials, 2013, 25, 2409-2414.	11.1	78
119	Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nature Protocols, 2013, 8, 2413-2428.	5.5	177
120	Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics. Science, 2013, 340, 211-216.	6.0	1,010
121	Biomimetics: A Biomimetic Composite from Solution Selfâ€Assembly of Chitin Nanofibers in a Silk Fibroin Matrix (Adv. Mater. 32/2013). Advanced Materials, 2013, 25, 4528-4528.	11.1	1
122	Tuning Chemical and Physical Cross-Links in Silk Electrogels for Morphological Analysis and Mechanical Reinforcement. Biomacromolecules, 2013, 14, 2629-2635.	2.6	63
123	Recombinant reflectinâ€based optical materials. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 254-264.	2.4	51
124	An Analytical Model of Reactive Diffusion for Transient Electronics. Advanced Functional Materials, 2013, 23, 3106-3114.	7.8	74
125	Silk as a Multifunctional Biomaterial Substrate for Reduced Glial Scarring around Brainâ€₽enetrating Electrodes. Advanced Functional Materials, 2013, 23, 3185-3193.	7.8	111
126	Materials and Fabrication Processes for Transient and Bioresorbable Highâ€Performance Electronics. Advanced Functional Materials, 2013, 23, 4087-4093.	7.8	222

#	Article	IF	CITATIONS
127	Transdermal Delivery Devices: Fabrication, Mechanics and Drug Release from Silk. Small, 2013, 9, 3704-3713.	5.2	63
128	Dielectric Breakdown Strength of Regenerated Silk Fibroin Films as a Function of Protein Conformation. Biomacromolecules, 2013, 14, 3509-3514.	2.6	24
129	Antibioticâ€Releasing Silk Biomaterials for Infection Prevention and Treatment. Advanced Functional Materials, 2013, 23, 854-861.	7.8	164
130	Nanoimprinting: Proteinâ€Protein Nanoimprinting of Silk Fibroin Films (Adv. Mater. 17/2013). Advanced Materials, 2013, 25, 2378-2378.	11.1	1
131	Silk protein based hybrid photonic-plasmonic crystal. Optics Express, 2013, 21, 8897.	1.7	31
132	Fluorescent nanoparticles for biosensing applications. , 2013, , .		0
133	Three-dimensional thermal analysis of wirelessly powered light-emitting systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 4088-4097.	1.0	4
134	Implantable, multifunctional, bioresorbable optics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19584-19589.	3.3	112
135	Graphene-based wireless bacteria detection on tooth enamel. Nature Communications, 2012, 3, 763.	5.8	806
136	Silk inverse opals. Nature Photonics, 2012, 6, 818-823.	15.6	217
137	A Physically Transient Form of Silicon Electronics. Science, 2012, 337, 1640-1644.	6.0	1,085
138	Direct Transfer of Subwavelength Plasmonic Nanostructures on Bioactive Silk Films. Advanced Materials, 2012, 24, 6088-6093.	11.1	43
139	Flexible Electronics: Materials and Designs for Wirelessly Powered Implantable Lightâ€Emitting Systems (Small 18/2012). Small, 2012, 8, 2770-2770.	5.2	2
140	Low-threshold blue lasing from silk fibroin thin films. Applied Physics Letters, 2012, 101, 091110.	1.5	77
141	Optically induced birefringence and holography in silk. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 257-262.	2.4	20
142	Biofunctional Silk/Neuron Interfaces. Advanced Functional Materials, 2012, 22, 1871-1884.	7.8	52
143	Biomaterials: Biofunctional Silk/Neuron Interfaces (Adv. Funct. Mater. 9/2012). Advanced Functional Materials, 2012, 22, 1870-1870.	7.8	0
144	Silk Materials – A Road to Sustainable High Technology. Advanced Materials, 2012, 24, 2824-2837.	11.1	456

#	Article	IF	CITATIONS
145	Fabrication of Silk Microneedles for Controlledâ€Release Drug Delivery. Advanced Functional Materials, 2012, 22, 330-335.	7.8	245
146	Silkâ€Based Conformal, Adhesive, Edible Food Sensors. Advanced Materials, 2012, 24, 1067-1072.	11.1	335
147	Physical and chemical aspects of stabilization of compounds in silk. Biopolymers, 2012, 97, 479-498.	1.2	138
148	Silk - new opportunities in optics and photonics for an ancient material. , 2011, , .		0
149	Epidermal Electronics. Science, 2011, 333, 838-843.	6.0	3,944
150	Rapid Transferâ€Based Micropatterning and Dry Etching of Silk Microstructures. Advanced Materials, 2011, 23, 2015-2019.	11.1	47
151	Effect of processing on silkâ€based biomaterials: Reproducibility and biocompatibility. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 89-101.	1.6	281
152	Functionalized‧ilkâ€Based Active Optofluidic Devices. Advanced Functional Materials, 2010, 20, 1083-1089.	7.8	64
153	Bioâ€microfluidics: Biomaterials and Biomimetic Designs. Advanced Materials, 2010, 22, 249-260.	11.1	178
154	Rapid Nanoimprinting of Silk Fibroin Films for Biophotonic Applications. Advanced Materials, 2010, 22, 1746-1749.	11.1	139
155	Metamaterial Silk Composites at Terahertz Frequencies. Advanced Materials, 2010, 22, 3527-3531.	11.1	102
156	Rapid Nanoimprinting of Doped Silk Films for Enhanced Fluorescent Emission. Advanced Materials, 2010, 22, 4596-4599.	11.1	49
157	Silk Metamaterials: Metamaterial Silk Composites at Terahertz Frequencies (Adv. Mater. 32/2010). Advanced Materials, 2010, 22, n/a-n/a.	11.1	0
158	Stabilization and Release of Enzymes from Silk Films. Macromolecular Bioscience, 2010, 10, 359-368.	2.1	127
159	SnapShot: Silk Biomaterials. Biomaterials, 2010, 31, 6119-6120.	5.7	6
160	Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Materials, 2010, 9, 511-517.	13.3	1,501
161	Surface Enhanced Vibrational Spectroscopy of Proteins with Plasmonic Nanoantenna Arrays. Materials Research Society Symposia Proceedings, 2010, 1248, 1002.	0.1	0
162	Gold nanoparticle-doped biocompatible silk films as a path to implantable thermo-electrically wireless powering devices. Applied Physics Letters, 2010, 97, 123702.	1.5	24

#	Article	IF	CITATIONS
163	Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12086-12090.	3.3	54
164	New Opportunities for an Ancient Material. Science, 2010, 329, 528-531.	6.0	1,224
165	Insoluble and Flexible Silk Films Containing Glycerol. Biomacromolecules, 2010, 11, 143-150.	2.6	187
166	Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications. Applied Physics Letters, 2010, 97, .	1.5	158
167	Bioactive "self-sensing―optical systems. Applied Physics Letters, 2009, 95, 253702.	1.5	46
168	Biocompatible Silk Printed Optical Waveguides. Advanced Materials, 2009, 21, 2411-2415.	11.1	308
169	Silk film biomaterials for cornea tissue engineering. Biomaterials, 2009, 30, 1299-1308.	5.7	362
170	Spectral analysis of induced color change on periodically nanopatterned silk films. Optics Express, 2009, 17, 21271.	1.7	60
171	Stabilization of Enzymes in Silk Films. Biomacromolecules, 2009, 10, 1032-1042.	2.6	174
172	Processing methods to control silk fibroin film biomaterial features. Journal of Materials Science, 2008, 43, 6967-6985.	1.7	170
173	Nano―and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films. Advanced Materials, 2008, 20, 3070-3072.	11.1	181
174	A new route for silk. Nature Photonics, 2008, 2, 641-643.	15.6	306
175	Bioactive Silk Protein Biomaterial Systems for Optical Devices. Biomacromolecules, 2008, 9, 1214-1220.	2.6	281
176	Silk fibroin-based active optofluidics. , 2008, , .		1
177	A path for non-invasive glucose detection using mid-IR supercontinuum. , 2008, , .		0
178	Supercontinuum generation using imaging taper. , 2007, , .		0
179	IR Supercontinuum in Compact Tellurite PCFs. , 2007, , .		2
180	Supercontinuum generation using imaging taper. , 2007, , .		0

#	Article	IF	CITATIONS
181	High nonlinearity glass photonic crystal nanowires. , 2007, , .		Ο
182	Towards an Integrated Optofluidic Diffractive Spectrometer. IEEE Photonics Technology Letters, 2007, 19, 1976-1978.	1.3	7
183	Spectrally controlled supercontinuum generation. , 2006, , .		0