Edwin S Bremer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2550477/publications.pdf Version: 2024-02-01

FOWIN S RDEMED

#	Article	IF	CITATIONS
1	Endoplasmic reticulum stress-induced release and binding of calreticulin from human ovarian cancer cells. Cancer Immunology, Immunotherapy, 2022, 71, 1655-1669.	4.2	10
2	CD40- and 41BB-specific antibody fusion proteins with PDL1 blockade-restricted agonism. Theranostics, 2022, 12, 1486-1499.	10.0	8
3	DSP107 combines inhibition of CD47/SIRPα axis with activation of 4-1BB to trigger anticancer immunity. Journal of Experimental and Clinical Cancer Research, 2022, 41, 97.	8.6	12
4	Galectin-9 Triggers Neutrophil-Mediated Anticancer Immunity. Biomedicines, 2022, 10, 66.	3.2	11
5	Expression of CD39 Identifies Activated Intratumoral CD8+ T Cells in Mismatch Repair Deficient Endometrial Cancer. Cancers, 2022, 14, 1924.	3.7	5
6	CD24 Is a Potential Immunotherapeutic Target for Mantle Cell Lymphoma. Biomedicines, 2022, 10, 1175.	3.2	16
7	Towards Immunotherapy-Induced Normalization of the Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	7
8	Inhibition of Autophagy Does Not Re-Sensitize Acute Myeloid Leukemia Cells Resistant to Cytarabine. International Journal of Molecular Sciences, 2021, 22, 2337.	4.1	16
9	The Role of Macrophages in Cancer Development and Therapy. Cancers, 2021, 13, 1946.	3.7	143
10	High Loading Efficiency and Controlled Release of Bioactive Immunotherapeutic Proteins Using Vaterite Nanoparticles. Particle and Particle Systems Characterization, 2021, 38, 2100012.	2.3	7
11	Whispering Gallery Modes-based biosensors for real-time monitoring and binding characterization of antibody-based cancer immunotherapeutics. Sensors and Actuators B: Chemical, 2021, 346, 130512.	7.8	6
12	CD20 positive CD8 T cells are a unique and transcriptionally-distinct subset of T cells with distinct transmigration properties. Scientific Reports, 2021, 11, 20499.	3.3	11
13	The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. International Journal of Molecular Sciences, 2020, 21, 7820.	4.1	21
14	Low-Dose Metformin Reprograms the Tumor Immune Microenvironment in Human Esophageal Cancer: Results of a Phase II Clinical Trial. Clinical Cancer Research, 2020, 26, 4921-4932.	7.0	86
15	Galectin-9 Is a Possible Promoter of Immunopathology in Rheumatoid Arthritis by Activation of Peptidyl Arginine Deiminase 4 (PAD-4) in Granulocytes. International Journal of Molecular Sciences, 2019, 20, 4046.	4.1	28
16	CD47 Expression Defines Efficacy of Rituximab with CHOP in Non–Germinal Center B-cell (Non-GCB) Diffuse Large B-cell Lymphoma Patients (DLBCL), but Not in GCB DLBCL. Cancer Immunology Research, 2019, 7, 1663-1671.	3.4	28
17	The Biophysical Interaction of the Danger-Associated Molecular Pattern (DAMP) Calreticulin with the Pattern-Associated Molecular Pattern (PAMP) Lipopolysaccharide. International Journal of Molecular Sciences, 2019, 20, 408.	4.1	22
18	Cancer cell-expressed SLAMF7 is not required for CD47-mediated phagocytosis. Nature Communications, 2019, 10, 533.	12.8	26

EDWIN S BREMER

#	Article	IF	CITATIONS
19	Bispecific Antibody Approach for Improved Melanoma-Selective PD-L1 Immune Checkpoint Blockade. Journal of Investigative Dermatology, 2019, 139, 2343-2351.e3.	0.7	20
20	Development of Bispecific Antibody Derivatives for Cancer Immunotherapy. Methods in Molecular Biology, 2019, 1884, 335-347.	0.9	5
21	The multifaceted role of autophagy in cancer and the microenvironment. Medicinal Research Reviews, 2019, 39, 517-560.	10.5	146
22	Abstract A076: DSP107—a novel SIRPα-4-1BBL dual signaling protein (DSP) for cancer immunotherapy. Cancer Immunology Research, 2019, 7, A076-A076.	3.4	7
23	A novel bispecific antibody for EGFR-directed blockade of the PD-1/PD-L1 immune checkpoint. Oncolmmunology, 2018, 7, e1466016.	4.6	42
24	CD20-selective inhibition of CD47-SIRPα "don't eat me―signaling with a bispecific antibody-derivative enhances the anticancer activity of daratumumab, alemtuzumab and obinutuzumab. OncoImmunology, 2018, 7, e1386361.	4.6	58
25	Antibody-based targeting of TNF-ligands for cancer therapy. European Journal of Molecular and Clinical Medicine, 2017, 2, 67.	0.1	0
26	A versatile pretargeting approach for tumour-selective delivery and activation of TNF superfamily members. Scientific Reports, 2017, 7, 13301.	3.3	6
27	CD47, a multi-facetted target for cancer immunotherapy. Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2017, , .	0.1	1
28	Melanoma-Directed Activation of Apoptosis Using a Bispecific Antibody Directed at MCSP and TRAIL Receptor-2/Death Receptor-5. Journal of Investigative Dermatology, 2016, 136, 541-544.	0.7	18
29	Programmed Death Ligand 1 (PD-L1)-targeted TRAIL combines PD-L1-mediated checkpoint inhibition with TRAIL-mediated apoptosis induction. Oncolmmunology, 2016, 5, e1202390.	4.6	35
30	Calreticulin, a therapeutic target?. Expert Opinion on Therapeutic Targets, 2016, 20, 1137-1147.	3.4	56
31	Editorial: Endoplasmic Reticulum and Its Role in Tumor Immunity. Frontiers in Oncology, 2015, 5, 252.	2.8	1
32	Mechanisms of Translocation of ER Chaperones to the Cell Surface and Immunomodulatory Roles in Cancer and Autoimmunity. Frontiers in Oncology, 2015, 5, 7.	2.8	117
33	The epithelial polarity regulator LGALS9/galectin-9 induces fatal frustrated autophagy in KRAS mutant colon carcinoma that depends on elevated basal autophagic flux. Autophagy, 2015, 11, 1373-1388.	9.1	49
34	The Ever-Expanding Immunomodulatory Role of Calreticulin in Cancer Immunity. Frontiers in Oncology, 2015, 5, 35.	2.8	36
35	CD20 ⁺ T cells have a predominantly Tc1 effector memory phenotype and are expanded in the ascites of patients with ovarian cancer. Oncolmmunology, 2015, 4, e999536.	4.6	17
36	C-type lectin-like molecule-1 (CLL1)-targeted TRAIL augments the tumoricidal activity of granulocytes and notentiates therapeutic antibody-dependent cell-mediated cytotoxicity. MAbs, 2015, 7, 321-330	5.2	22

EDWIN S BREMER

#	Article	IF	CITATIONS
37	Apoptosis Induction for Cancer Therapy. , 2015, , 328-330.		0
38	Elevated serum CXCL16 is an independent predictor of poor survival in ovarian cancer and may reflect pro-metastatic ADAM protease activity. British Journal of Cancer, 2014, 110, 1535-1544.	6.4	30
39	Direct and Indirect Rituximabâ€Induced T Cell Depletion: Comment on the Article by Mélet et al. Arthritis and Rheumatology, 2014, 66, 1053-1053.	5.6	10
40	A <scp>CD</scp> 47â€blocking <scp>TRAIL</scp> fusion protein with dual proâ€phagocytic and proâ€apoptotic anticancer activity. British Journal of Haematology, 2014, 164, 304-307.	2.5	15
41	CD20+inflammatory T-cells are present in blood and brain of multiple sclerosis patients and can be selectively targeted for apoptotic elimination. Multiple Sclerosis and Related Disorders, 2014, 3, 650-658.	2.0	49
42	Targeted elimination of activated hepatic stellate cells by an antiâ€epidermal growth factorâ€receptor single chain fragment variable antibodyâ€tumor necrosis factorâ€related apoptosisâ€inducing ligand (scFv425â€sTRAIL). Journal of Gene Medicine, 2014, 16, 281-290.	2.8	8
43	Targeted delivery of CD40L promotes restricted activation of antigen-presenting cells and induction of cancer cell death. Molecular Cancer, 2014, 13, 85.	19.2	21
44	Bifunctional Antibody Fragment-Based Fusion Proteins for the Targeted Elimination of Pathogenic T-Cell Subsets. Methods in Molecular Biology, 2014, 1134, 79-93.	0.9	1
45	Therapeutic potential of Galectinâ€9 in human disease. Medicinal Research Reviews, 2013, 33, E102-26.	10.5	120
46	Antibody-based fusion proteins to target death receptors in cancer. Cancer Letters, 2013, 332, 175-183.	7.2	46
47	Targeting of the Tumor Necrosis Factor Receptor Superfamily for Cancer Immunotherapy. ISRN Oncology, 2013, 2013, 1-25.	2.1	65
48	Galectin-9 Activates and Expands Human T-Helper 1 Cells. PLoS ONE, 2013, 8, e65616.	2.5	43
49	The Glycan-Binding Protein Galectin-9 Has Direct Apoptotic Activity toward Melanoma Cells. Journal of Investigative Dermatology, 2012, 132, 2302-2305.	0.7	35
50	Frequency of Th17 CD20+ cells in the peripheral blood of rheumatoid arthritis patients is higher compared to healthy subjects. Arthritis Research and Therapy, 2011, 13, R208.	3.5	56
51	Selective elimination of pathogenic synovial fluid T-cells from Rheumatoid Arthritis and Juvenile Idiopathic Arthritis by targeted activation of Fas-apoptotic signaling. Immunology Letters, 2011, 138, 161-168.	2.5	15
52	Cell Surface Delivery of TRAIL Strongly Augments the Tumoricidal Activity of T Cells. Clinical Cancer Research, 2011, 17, 5626-5637.	7.0	32
53	Apoptosis Induction for Cancer Therapy. , 2011, , 242-244.		1
54	Carbon monoxide-Releasing Molecule-2 (CORM-2) attenuates acute hepatic ischemia reperfusion injury in rats. BMC Gastroenterology, 2010, 10, 42.	2.0	80

EDWIN S BREMER

#	Article	IF	CITATIONS
55	Review: On TRAIL for malignant glioma therapy?. Neuropathology and Applied Neurobiology, 2010, 36, 168-182.	3.2	54
56	A Better TRAIL Variant for Tumor Cell–Specific Targeting? – Letter. Molecular Cancer Therapeutics, 2010, 9, 2853-2853.	4.1	3
57	Melanoma-associated Chondroitin Sulfate Proteoglycan (MCSP)-targeted delivery of soluble TRAIL potently inhibits melanoma outgrowth in vitro and in vivo. Molecular Cancer, 2010, 9, 301.	19.2	58
58	A novel AML-selective TRAIL fusion protein that is superior to Gemtuzumab Ozogamicin in terms of in vitro selectivity, activity and stability. Leukemia, 2009, 23, 1389-1397.	7.2	57
59	Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein. Cancer Immunology, Immunotherapy, 2008, 57, 233-246.	4.2	73
60	Targeted delivery of a designed sTRAIL mutant results in superior apoptotic activity towards EGFR-positive tumor cells. Journal of Molecular Medicine, 2008, 86, 909-924.	3.9	37
61	Superior Activity of Fusion Protein scFvRit:sFasL over Cotreatment with Rituximab and Fas Agonists. Cancer Research, 2008, 68, 597-604.	0.9	47
62	Potent Systemic Anticancer Activity of Adenovirally Expressed EGFR-Selective TRAIL Fusion Protein. Molecular Therapy, 2008, 16, 1919-1926.	8.2	29
63	EpCAM-targeted induction of apoptosis. Frontiers in Bioscience - Landmark, 2008, Volume, 5042.	3.0	3
64	EpCAM in morphogenesis. Frontiers in Bioscience - Landmark, 2008, Volume, 5050.	3.0	21
65	The histone deacetylase inhibitor valproic acid potently augments gemtuzumab ozogamicin-induced apoptosis in acute myeloid leukemic cells. Leukemia, 2007, 21, 248-252.	7.2	46
66	Targeted induction of apoptosis for cancer therapy: current progress and prospects. Trends in Molecular Medicine, 2006, 12, 382-393.	6.7	123
67	CD7-restricted activation of Fas-mediated apoptosis: a novel therapeutic approach for acute T-cell leukemia. Blood, 2006, 107, 2863-2870.	1.4	53
68	Target Cell–Restricted Apoptosis Induction of Acute Leukemic T Cells by a Recombinant Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Fusion Protein with Specificity for Human CD7. Cancer Research, 2005, 65, 3380-3388.	0.9	83
69	Simultaneous Inhibition of Epidermal Growth Factor Receptor (EGFR) Signaling and Enhanced Activation of Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Receptor-mediated Apoptosis Induction by an scFv:sTRAIL Fusion Protein with Specificity for Human EGFR. Journal of Biological Chemistry, 2005, 280, 10025-10033	3.4	88
70	Target cell-restricted and -enhanced apoptosis induction by a scFv:sTRAIL fusion protein with specificity for the pancarcinoma-associated antigen EGP2. International Journal of Cancer, 2004, 109, 281-290.	5.1	85
71	Exceptionally Potent Anti-Tumor Bystander Activity of an scFv:sTRAIL Fusion Protein with Specificity for EGP2 Toward Target Antigen-Negative Tumor Cells. Neoplasia, 2004, 6, 636-645.	5.3	49