Yuze Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2550311/publications.pdf

Version: 2024-02-01

50276 46799 16,983 92 46 89 citations h-index g-index papers 96 96 96 11016 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Advanced Materials, 2015, 27, 1170-1174.	21.0	3,365
2	Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions andÂcations. Nature Energy, 2017, 2, .	39.5	1,694
3	Small molecule semiconductors for high-efficiency organic photovoltaics. Chemical Society Reviews, 2012, 41, 4245.	38.1	1,601
4	High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. Journal of the American Chemical Society, 2016, 138, 4955-4961.	13.7	915
5	A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. Journal of the American Chemical Society, 2016, 138, 2973-2976.	13.7	885
6	Non-fullerene acceptors for organic photovoltaics: an emerging horizon. Materials Horizons, 2014, 1, 470.	12.2	694
7	High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy and Environmental Science, 2015, 8, 610-616.	30.8	587
8	Oligomer Molecules for Efficient Organic Photovoltaics. Accounts of Chemical Research, 2016, 49, 175-183.	15.6	560
9	Ï€â€Conjugated Lewis Base: Efficient Trapâ€Passivation and Chargeâ€Extraction for Hybrid Perovskite Solar Cells. Advanced Materials, 2017, 29, 1604545.	21.0	543
10	A Starâ€Shaped Perylene Diimide Electron Acceptor for Highâ€Performance Organic Solar Cells. Advanced Materials, 2014, 26, 5137-5142.	21.0	390
11	Mapping Polymer Donors toward Highâ€Efficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	21.0	360
12	Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2018, 30, e1803428.	21.0	296
13	Thiazoleâ€Based Organic Semiconductors for Organic Electronics. Advanced Materials, 2012, 24, 3087-3106.	21.0	288
14	Selenium Heterocyclic Electron Acceptor with Small Urbach Energy for As-Cast High-Performance Organic Solar Cells. Journal of the American Chemical Society, 2020, 142, 18741-18745.	13.7	288
15	A 3D star-shaped non-fullerene acceptor for solution-processed organic solar cells with a high open-circuit voltage of 1.18 V. Chemical Communications, 2012, 48, 4773.	4.1	281
16	A Solutionâ€Processable Small Molecule Based on Benzodithiophene and Diketopyrrolopyrrole for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2013, 3, 1166-1170.	19.5	203
17	Designing Efficient Nonâ€Fullerene Acceptors by Tailoring Extended Fusedâ€Rings with Electronâ€Deficient Groups. Advanced Energy Materials, 2015, 5, 1501063.	19.5	203
18	Naphthodithiopheneâ€Based Nonfullerene Acceptor for Highâ€Performance Organic Photovoltaics: Effect of Extended Conjugation. Advanced Materials, 2018, 30, 1704713.	21.0	199

#	Article	IF	CITATIONS
19	Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nature Energy, 2020, 5, 657-665.	39.5	186
20	Matching Charge Extraction Contact for Wideâ∈Bandgap Perovskite Solar Cells. Advanced Materials, 2017, 29, 1700607.	21.0	178
21	Balanced Partnership between Donor and Acceptor Components in Nonfullerene Organic Solar Cells with >12% Efficiency. Advanced Materials, 2018, 30, e1706363.	21.0	172
22	Crystallization in one-step solution deposition of perovskite films: Upward or downward?. Science Advances, 2021, 7, .	10.3	165
23	A Solutionâ€Processable Electron Acceptor Based on Dibenzosilole and Diketopyrrolopyrrole for Organic Solar Cells. Advanced Energy Materials, 2013, 3, 724-728.	19.5	161
24	Excess charge-carrier induced instability of hybrid perovskites. Nature Communications, 2018, 9, 4981.	12.8	159
25	Structure Evolution of Oligomer Fusedâ€Ring Electron Acceptors toward High Efficiency of Asâ€Cast Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600854.	19.5	152
26	A Twisted Dimeric Perylene Diimide Electron Acceptor for Efficient Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400420.	19.5	126
27	Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 1231-1240.	17.4	111
28	An Electron Acceptor Analogue for Lowering Trap Density in Organic Solar Cells. Advanced Materials, 2021, 33, e2008134.	21.0	91
29	Smallâ€Molecule Solar Cells with Fill Factors up to 0.75 via a Layerâ€by‣ayer Solution Process. Advanced Energy Materials, 2014, 4, 1300626.	19.5	90
30	Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems. Journal of Materials Chemistry A, 2016, 4, 1044-1051.	10.3	84
31	Argon Plasma Treatment to Tune Perovskite Surface Composition for High Efficiency Solar Cells and Fast Photodetectors. Advanced Materials, 2018, 30, 1705176.	21.0	81
32	Discrete Iron(III) Oxide Nanoislands for Efficient and Photostable Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1702090.	14.9	79
33	Alkoxy-Induced Near-Infrared Sensitive Electron Acceptor for High-Performance Organic Solar Cells. Chemistry of Materials, 2018, 30, 4150-4156.	6.7	79
34	Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells. Nano Letters, 2017, 17, 5140-5147.	9.1	78
35	Effect of Alkyl Side Chains of Conjugated Polymer Donors on the Device Performance of Non-Fullerene Solar Cells. Macromolecules, 2016, 49, 6445-6454.	4.8	76
36	Highly Sensitive Organic Photodetectors with Tunable Spectral Response under Biâ€Directional Bias. Advanced Optical Materials, 2016, 4, 1711-1717.	7.3	75

#	Article	IF	Citations
37	Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe perovskite modules. Science Advances, 2021, 7, eabi8249.	10.3	71
38	A star-shaped oligothiophene end-capped with alkyl cyanoacetate groups for solution-processed organic solar cells. Chemical Communications, 2012, 48, 9655.	4.1	70
39	Metallic surface doping of metal halide perovskites. Nature Communications, 2021, 12, 7.	12.8	66
40	Fast Growth of Thin MAPbl ₃ Crystal Wafers on Aqueous Solution Surface for Efficient Lateralâ€5tructure Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1807707.	14.9	62
41	Ambient roll-to-roll fabrication of flexible solar cells based on small molecules. Journal of Materials Chemistry C, 2013, 1, 8007.	5.5	59
42	Low-cost materials for organic solar cells. Journal of Materials Chemistry C, 2021, 9, 15395-15406.	5.5	58
43	Nonâ€Radiative Recombination Energy Losses in Nonâ€Fullerene Organic Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	58
44	Revealing defective nanostructured surfaces and their impact on the intrinsic stability of hybrid perovskites. Energy and Environmental Science, 2021, 14, 1563-1572.	30.8	55
45	Efficient fullerene-free organic solar cells based on fused-ring oligomer molecules. Journal of Materials Chemistry A, 2016, 4, 1486-1494.	10.3	48
46	Perylene and naphthalene diimide polymers for all-polymer solar cells: a comparative study of chemical copolymerization and physical blend. Polymer Chemistry, 2015, 6, 5254-5263.	3.9	47
47	Asymmetric Glycolated Substitution for Enhanced Permittivity and Ecocompatibility of High-Performance Photovoltaic Electron Acceptor. Jacs Au, 2021, 1, 1733-1742.	7.9	47
48	Evolved structure of thiazolothiazole based small molecules towards enhanced efficiency in organic solar cells. Organic Electronics, 2013, 14, 599-606.	2.6	45
49	Oligothiophene-bridged perylene diimide dimers for fullerene-free polymer solar cells: effect of bridge length. Journal of Materials Chemistry A, 2015, 3, 13000-13010.	10.3	45
50	Nonfullerene Allâ€Smallâ€Molecule Organic Solar Cells: Prospect and Limitation. Solar Rrl, 2020, 4, 2000258.	5.8	43
51	One, two and three-branched triphenylamine–oligothiophene hybrids for solution-processed solar cells. Journal of Materials Chemistry A, 2013, 1, 5128.	10.3	41
52	Stability: next focus in organic solar cells based on non-fullerene acceptors. Materials Chemistry Frontiers, 2021, 5, 2907-2930.	5.9	39
53	A star-shaped electron acceptor based on 5,5 \hat{a} e-bibenzothiadiazole for solution processed solar cells. Journal of Materials Chemistry A, 2013, 1, 14627.	10.3	38
54	Enhancing the performance of a fused-ring electron acceptor <i>via</i> extending benzene to naphthalene. Journal of Materials Chemistry C, 2018, 6, 66-71.	5.5	38

#	Article	IF	CITATIONS
55	Conjugated Polymers Based on a New Building Block: Dithienophthalimide. Macromolecules, 2011, 44, 4213-4221.	4.8	36
56	Small molecules based on bithiazole for solution-processed organic solar cells. Organic Electronics, 2012, 13, 673-680.	2.6	36
57	Comparison of additive amount used in spin-coated and roll-coated organic solar cells. Journal of Materials Chemistry A, 2014, 2, 19542-19549.	10.3	36
58	Perylene diimide–thienylenevinylene-based small molecule and polymer acceptors for solution-processed fullerene-free organic solarÂcells. Dyes and Pigments, 2015, 114, 283-289.	3.7	28
59	Exciton Binding Energy of Nonâ€Fullerene Electron Acceptors. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	27
60	Passivated Metal Oxide n-Type Contacts for Efficient and Stable Organic Solar Cells. ACS Applied Energy Materials, 2020, 3, 1111-1118.	5.1	26
61	Organic Photovoltaic Catalyst with Extended Exciton Diffusion for High-Performance Solar Hydrogen Evolution. Journal of the American Chemical Society, 2022, 144, 12747-12755.	13.7	26
62	Twoâ€Dimensional Polycyclic Photovoltaic Molecule with Low Trap Density for Highâ€Performance Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
63	Monodisperse macromolecules based on benzodithiophene and diketopyrrolopyrrole with strong NIR absorption and high mobility. Journal of Materials Chemistry C, 2016, 4, 3781-3791.	5.5	22
64	Efficient room temperature catalytic synthesis of alternating conjugated copolymers via C-S bond activation. Nature Communications, 2022, 13, 144.	12.8	21
65	Intrinsically inert hyperbranched interlayer for enhanced stability of organic solar cells. Science Bulletin, 2022, 67, 171-177.	9.0	20
66	Enhancing Transition Dipole Moments of Heterocyclic Semiconductors via Rational Nitrogenâ∈Substitution for Sensitive Near Infrared Detection. Advanced Materials, 2022, 34, e2201600.	21.0	19
67	Cracking perylene diimide backbone for fullerene-free polymer solar cells. Dyes and Pigments, 2016, 128, 226-234.	3.7	18
68	Spirobifluorene-based acceptors for polymer solar cells: Effect of isomers. Dyes and Pigments, 2015, 123, 16-25.	3.7	16
69	Organic Semiconductors for Vacuum-Deposited Planar Heterojunction Solar Cells. ACS Omega, 2020, 5, 24994-24999.	3.5	16
70	Defectâ€Free Alternating Conjugated Polymers Enabled by Room―Temperature Stille Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
71	Influence of Thiophene Moiety on the Excited State Properties of Push–Pull Chromophores. Journal of Physical Chemistry C, 2016, 120, 13922-13930.	3.1	14
72	Nonfullerene acceptor with strong near-infrared absorption for polymer solar cells. Dyes and Pigments, 2017, 137, 553-559.	3.7	14

#	Article	IF	CITATIONS
73	Planar heterojunctions for reduced non-radiative open-circuit voltage loss and enhanced stability of organic solar cells. Journal of Materials Chemistry C, 2021, 9, 11715-11721.	5.5	13
74	Single photovoltaic material solar cells with enhanced exciton dissociation and extended electron diffusion. Cell Reports Physical Science, 2022, 3, 100895.	5.6	13
75	Fine-Tuning Contact via Complexation for High-Performance Organic Solar Cells. CCS Chemistry, 2022, 4, 1087-1097.	7.8	12
76	An Alkoxyâ€Solubilizing Decacyclic Electron Acceptor for Efficient Ecofriendly Asâ€Cast Bladeâ€Coated Organic Solar Cells. Solar Rrl, 2020, 4, 2000108.	5.8	11
77	Organic photovoltaic electron acceptors showing aggregation-induced emission for reduced nonradiative recombination. Chemical Communications, 2021, 57, 5135-5138.	4.1	10
78	Enhancing photovoltaic performance via aggregation dynamics control in fusedâ€ring electron acceptor. Aggregate, 2021, 2, e29.	9.9	10
79	Perovskite solar cells with embedded homojunction via nonuniform metal ion doping. Cell Reports Physical Science, 2021, 2, 100415.	5.6	10
80	A Novel, Weakly Nâ€Doped Cathodeâ€Modifying Layer in Organic Solar Cells. Energy Technology, 2021, 9, 2100281.	3.8	10
81	Fused thienobenzene-thienothiophene electron acceptors for organic solar cells. Journal of Energy Chemistry, 2019, 37, 58-65.	12.9	7
82	Co ²⁺ -Tuned Tin Oxide Interfaces for Enhanced Stability of Organic Solar Cells. Langmuir, 2021, 37, 3173-3179.	3.5	7
83	Bayâ€annulated indigo based nearâ€infrared sensitive polymer for organic solar cells. Journal of Polymer Science Part A, 2018, 56, 213-220.	2.3	6
84	Surface fluoride management for enhanced stability and efficiency of halide perovskite solar cells <i>via</i> a thermal evaporation method. Journal of Materials Chemistry A, 2022, 10, 12882-12889.	10.3	5
85	Pyrrolo[3,2-b]pyrrole-based fused-ring electron acceptors with strong near-infrared absorption beyond 1000Ånm. Dyes and Pigments, 2021, 195, 109705.	3.7	4
86	Twoâ€Dimensional Polycyclic Photovoltaic Molecule with Low Trap Density for Highâ€Performance Photocatalytic Hydrogen Evolution. Angewandte Chemie, 0, , .	2.0	4
87	Solar Cells: A Star‧haped Perylene Diimide Electron Acceptor for Highâ€Performance Organic Solar Cells (Adv. Mater. 30/2014). Advanced Materials, 2014, 26, 5224-5224.	21.0	3
88	Revealing the Unusual Efficiency Enhancement of Organic Solar Cells with Polymer-Donor-Treated Cathode Contacts. Chinese Journal of Polymer Science (English Edition), 2022, 40, 937-943.	3.8	3
89	Effects of Thieno[3,2-b]thiophene Number on Narrow-Bandgap Fused-Ring Electron Acceptors. Chinese Journal of Polymer Science (English Edition), 0, , .	3.8	1
90	Defectâ€Free Alternating Conjugated Polymers Enabled by Roomâ€Temperature Stille Polymerization. Angewandte Chemie, 0, , .	2.0	0

Yuze Lin

#	Article	IF	CITATION
91	RÃ⅓cktitelbild: Defectâ€Free Alternating Conjugated Polymers Enabled by Room―Temperature Stille Polymerization (Angew. Chem. 16/2022). Angewandte Chemie, 2022, 134, .	2.0	O
92	Vacuumâ€Assisted Thermal Annealing of CsPbI ₃ for Highly Stable and Efficient Inorganic Perovskite Solar Cells. Angewandte Chemie, 0, , .	2.0	0