
Nandan P Deshpande

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2550056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA sequencing identifies genes reliant upon Ser26 in early growth response-1 in vascular endothelial cells exposed to fibroblast growth factor-2. Vascular Pharmacology, 2022, , 106952.	2.1	2
2	Pathogen exposure leads to a transcriptional downregulation of core cellular functions that may dampen the immune response in a macroalga. Molecular Ecology, 2022, 31, 3468-3480.	3.9	3
3	The splicing factor RBM17 drives leukemic stem cell maintenance by evading nonsense-mediated decay of pro-leukemic factors. Nature Communications, 2022, 13, .	12.8	3
4	The RNA Atlas expands the catalog of human non-coding RNAs. Nature Biotechnology, 2021, 39, 1453-1465.	17.5	75
5	Multi-omics of the esophageal microenvironment identifies signatures associated with progression of Barrett's esophagus. Genome Medicine, 2021, 13, 133.	8.2	11
6	Raspberry ketone diet supplement reduces attraction of sterile male Queensland fruit fly to cuelure by altering expression of chemoreceptor genes. Scientific Reports, 2021, 11, 17632.	3.3	2
7	Intra-species variation within Lactobacillus rhamnosus correlates to beneficial or harmful outcomes: lessons from the oral cavity. BMC Genomics, 2020, 21, 661.	2.8	3
8	Thermostable small-molecule inhibitor of angiogenesis and vascular permeability that suppresses a pERK-FosB/ΔFosB–VCAM-1 axis. Science Advances, 2020, 6, eaaz7815.	10.3	16
9	RNA Splicing Alterations Induce a Cellular Stress Response Associated with Poor Prognosis in Acute Myeloid Leukemia. Clinical Cancer Research, 2020, 26, 3597-3607.	7.0	26
10	Little evidence of adaptation potential to ocean acidification in sea urchins living in "Future Ocean― conditions at a CO ₂ vent. Ecology and Evolution, 2019, 9, 10004-10016.	1.9	16
11	Whole genome sequencing of a novel, dichloromethane-fermenting <i>Peptococcaceae</i> from an enrichment culture. PeerJ, 2019, 7, e7775.	2.0	14
12	Identification of Recurrent Alternative RNA Splicing in Adverse-Risk Acute Myeloid Leukemia. Blood, 2019, 134, 457-457.	1.4	0
13	Transcriptional response of Nautella italica R11 towards its macroalgal host uncovers new mechanisms of host–pathogen interaction. Molecular Ecology, 2018, 27, 1820-1832.	3.9	9
14	Signatures within the esophageal microbiome are associated with host genetics, age, and disease. Microbiome, 2018, 6, 227.	11.1	101
15	Small <scp>RNA</scp> interactome of pathogenic <i>E.Âcoli</i> revealed through crosslinking of <scp>RN</scp> ase E. EMBO Journal, 2017, 36, 374-387.	7.8	153
16	Integrative Genomics Identifies the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic Syndromes. Cell Reports, 2017, 20, 572-585.	6.4	99
17	Characterization of SNP and Structural Variations in the Mitochondrial Genomes of Tilletia indica and Its Closely Related Species Formed Basis for a Simple Diagnostic Assay. PLoS ONE, 2016, 11, e0166086.	2.5	10
18	Campylobacter concisus pathotypes induce distinct global responses in intestinal epithelial cells. Scientific Reports, 2016, 6, 34288.	3.3	23

NANDAN P DESHPANDE

#	Article	IF	CITATIONS
19	Transcriptomic and Proteomic Analyses Reveal Key Innate Immune Signatures in the Host Response to the Gastrointestinal Pathogen Campylobacter concisus. Infection and Immunity, 2015, 83, 832-845.	2.2	45
20	Novel genetic markers define a subgroup of pathogenicEscherichia colistrains belonging to the B2 phylogenetic group. FEMS Microbiology Letters, 2015, 362, fnv193.	1.8	15
21	Tools to Covisualize and Coanalyze Proteomic Data with Genomes and Transcriptomes: Validation of Genes and Alternative mRNA Splicing. Journal of Proteome Research, 2014, 13, 84-98.	3.7	40
22	Comparative genomics of Campylobacter concisus isolates reveals genetic diversity and provides insights into disease association. BMC Genomics, 2013, 14, 585.	2.8	39
23	Genome Sequence of <i>Dehalobacter</i> UNSWDHB, a Chloroform-Dechlorinating Bacterium. Genome Announcements, 2013, 1, .	0.8	20
24	Next-generation sequencing: a challenge to meet the increasing demand for training workshops in Australia. Briefings in Bioinformatics, 2013, 14, 563-574.	6.5	17
25	Sequencing and Validation of the Genome of a Campylobacter concisus Reveals Intra-Species Diversity. PLoS ONE, 2011, 6, e22170.	2.5	32
26	The Pathogenic Potential of Campylobacter concisus Strains Associated with Chronic Intestinal Diseases. PLoS ONE, 2011, 6, e29045.	2.5	63
27	GlycoSpectrumScan: Fishing Glycopeptides from MS Spectra of Protease Digests of Human Colostrum slgA. Journal of Proteome Research, 2010, 9, 1063-1075.	3.7	100
28	Protein glycosylation pathways in filamentous fungi. Glycobiology, 2008, 18, 626-637.	2.5	157
29	Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nature Genetics, 2006, 38, 285-293.	21.4	433
30	A manually curated functional annotation of the human X chromosome. Nature Genetics, 2005, 37, 331-332.	21.4	16
31	A proteomic analysis of salivary glands of femaleAnopheles gambiae mosquito. Proteomics, 2005, 5, 3765-3777.	2.2	63
32	Plasma Proteome Database as a resource for proteomics research. Proteomics, 2005, 5, 3531-3536.	2.2	135
33	Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9309-9314.	7.1	874
34	ONCOMINE: A Cancer Microarray Database and Integrated Data-Mining Platform. Neoplasia, 2004, 6, 1-6.	5.3	3,212
35	Development of Human Protein Reference Database as an Initial Platform for Approaching Systems Biology in Humans. Genome Research, 2003, 13, 2363-2371.	5.5	954
36	Mining gene expression data for functional annotation of genomes. Trends in Biotechnology, 2002, 20, 282.	9.3	0