
Péter Szövényi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2549870/publications.pdf Version: 2024-02-01

ΡΔΩτερ ςζΔανΔΩΝΥΙ

#	Article	IF	CITATIONS
1	Different molecular changes underlie the same phenotypic transition: Origins and consequences of independent shifts to homostyly within species. Molecular Ecology, 2023, 32, 61-78.	3.9	8
2	Comparative Genomics Elucidates the Origin of a Supergene Controlling Floral Heteromorphism. Molecular Biology and Evolution, 2022, 39, .	8.9	27
3	Stepâ€byâ€step protocol for the isolation and transient transformation of hornwort protoplasts. Applications in Plant Sciences, 2022, 10, e11456.	2.1	12
4	The first step into phenolic metabolism in the hornwort Anthoceros agrestis: molecular and biochemical characterization of two phenylalanine ammonia-lyase isoforms. Planta, 2022, 256, .	3.2	0
5	The hornworts: morphology, evolution and development. New Phytologist, 2021, 229, 735-754.	7.3	72
6	Extensive Genome-Wide Phylogenetic Discordance Is Due to Incomplete Lineage Sorting and Not Ongoing Introgression in a Rapidly Radiated Bryophyte Genus. Molecular Biology and Evolution, 2021, 38, 2750-2766.	8.9	54
7	Charting the genomic landscape of seed-free plants. Nature Plants, 2021, 7, 554-565.	9.3	47
8	Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science, 2021, 372, 864-868.	12.6	90
9	An <i>Agrobacterium</i> â€mediated stable transformation technique for the hornwort model <i>Anthoceros agrestis</i> . New Phytologist, 2021, 232, 1488-1505.	7.3	18
10	Towards a plant model for enigmatic Uâ€ŧoâ€C RNA editing: the organelle genomes, transcriptomes, editomes and candidate RNA editing factors in the hornwort <i>Anthoceros agrestis</i> . New Phytologist, 2020, 225, 1974-1992.	7.3	57
11	A pseudomoleculeâ€scale genome assembly of the liverwort <i>Marchantia polymorpha</i> . Plant Journal, 2020, 101, 1378-1396.	5.7	35
12	Organellomic data sets confirm a cryptic consensus on (unrooted) landâ€plant relationships and provide new insights into bryophyte molecular evolution. American Journal of Botany, 2020, 107, 91-115.	1.7	38
13	Transcriptional Landscapes of Divergent Sporophyte Development in Two Mosses, Physcomitrium (Physcomitrella) patens and Funaria hygrometrica. Frontiers in Plant Science, 2020, 11, 747.	3.6	19
14	Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants, 2020, 6, 259-272.	9.3	225
15	Evolutionary History of the Marchantia polymorpha Complex. Frontiers in Plant Science, 2020, 11, 829.	3.6	15
16	Development and characterization of novel SSR markers in the endangered endemic species Ferula sadleriana. Applications in Plant Sciences, 2020, 8, e11321.	2.1	3
17	Extremely low genetic diversity in the European clade of the model bryophyte Anthoceros agrestis. Plant Systematics and Evolution, 2020, 306, 1.	0.9	1
18	The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics, 2019, 20, 605.	2.8	98

Péter Szövényi

#	Article	IF	CITATIONS
19	Orthologous nuclear markers and new transcriptomes that broadly cover the phylogenetic diversity of Acanthaceae. Applications in Plant Sciences, 2019, 7, e11290.	2.1	4
20	Evolution of the plant body plan. Current Topics in Developmental Biology, 2019, 131, 1-34.	2.2	31
21	The <i>Physcomitrella patens</i> gene atlas project: largeâ€scale <scp>RNA</scp> â€seq based expression data. Plant Journal, 2018, 95, 168-182.	5.7	115
22	The Sphagnome Project: enabling ecological and evolutionary insights through a genusâ€level sequencing project. New Phytologist, 2018, 217, 16-25.	7.3	54
23	CLAVATA Was a Genetic Novelty for the Morphological Innovation of 3D Growth in Land Plants. Current Biology, 2018, 28, 2365-2376.e5.	3.9	123
24	A fern <i><scp>AINTEGUMENTA</scp></i> gene mirrors <i><scp>BABY BOOM</scp></i> in promoting apogamy in <i>Ceratopteris richardii</i> . Plant Journal, 2017, 90, 122-132.	5.7	46
25	Hornworts: An Overlooked Window into Carbon-Concentrating Mechanisms. Trends in Plant Science, 2017, 22, 275-277.	8.8	25
26	How Do Cold-Adapted Plants Respond to Climatic Cycles? Interglacial Expansion Explains Current Distribution and Genomic Diversity in Primula farinosa L Systematic Biology, 2017, 66, 715-736.	5.6	26
27	Divergent evolution and niche differentiation within the common peatmoss <i>Sphagnum magellanicum</i> . American Journal of Botany, 2017, 104, 1060-1072.	1.7	28
28	Selfing in Haploid Plants and Efficacy of Selection: Codon Usage Bias in the Model Moss Physcomitrella patens. Genome Biology and Evolution, 2017, 9, 1528-1546.	2.5	21
29	Analyses of transcriptome sequences reveal multiple ancient largeâ€scale duplication events in the ancestor of Sphagnopsida (Bryophyta). New Phytologist, 2016, 211, 300-318.	7.3	56
30	Establishment of Anthoceros agrestis as a model species for studying the biology of hornworts. BMC Plant Biology, 2015, 15, 98.	3.6	53
31	<i>De novo</i> assembly and comparative analysis of the <i><scp>C</scp>eratodon purpureus</i> transcriptome. Molecular Ecology Resources, 2015, 15, 203-215.	4.8	43
32	Genetic and morphological diversity of <i>Sphagnum angustifolium, S. flexuosum</i> and <i>S. fallax</i> in Europe. Taxon, 2014, 63, 237-248.	0.7	10
33	Efficient Purging of Deleterious Mutations in Plants with Haploid Selfing. Genome Biology and Evolution, 2014, 6, 1238-1252.	2.5	38
34	Largeâ€scale gene expression profiling data for the model moss <i><scp>P</scp>hyscomitrella patens</i> aid understanding of developmental progression, culture and stress conditions. Plant Journal, 2014, 79, 530-539.	5.7	82
35	Selection Is No More Efficient in Haploid than in Diploid Life Stages of an Angiosperm and a Moss. Molecular Biology and Evolution, 2013, 30, 1929-1939.	8.9	41
36	Systematics of the <i>Sphagnum fimbriatum</i> Complex: Phylogenetic Relationships, Morphological Variation, and Allopolyploidy. Systematic Botany, 2012, 37, 15-30.	0.5	16

Péter Szövényi

#	Article	IF	CITATIONS
37	Longâ€distance dispersal and genetic structure of natural populations: an assessment of the inverse isolation hypothesis in peat mosses. Molecular Ecology, 2012, 21, 5461-5472.	3.9	49
38	Bryophyte diversity and evolution: Windows into the early evolution of land plants. American Journal of Botany, 2011, 98, 352-369.	1.7	169
39	Assigning DYWâ€ŧype PPR proteins to RNA editing sites in the funariid mosses <i>Physcomitrella patens</i> and <i>Funaria hygrometrica</i> . Plant Journal, 2011, 67, 370-380.	5.7	46
40	Oceanic islands are not sinks of biodiversity in spore-producing plants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18989-18994.	7.1	74
41	Generation-Biased Gene Expression in a Bryophyte Model System. Molecular Biology and Evolution, 2011, 28, 803-812.	8.9	49
42	Effects of Pleistocene glaciations on the genetic structure of <i>Saxifraga florulenta</i> (Saxifragaceae), a rare endemic of the Maritime Alps. Taxon, 2009, 58, 532-543.	0.7	20
43	Population genetic consequences of the reproductive system in the liverwort Mannia fragrans. Plant Ecology, 2009, 202, 123-134.	1.6	10
44	Bryophyte diaspore bank: a genetic memory? Genetic structure and genetic diversity of surface populations and diaspore bank in the liverwort <i>Mannia fragrans</i> (Aytoniaceae). American Journal of Botany, 2008, 95, 542-548.	1.7	27
45	Are sexual or asexual events determining the genetic structure of populations in the liverwort <i>Mannia fragrans</i> ?. Journal of Bryology, 2008, 30, 66-73.	1.2	7
46	Multilocus dataset reveals demographic histories of two peat mosses in Europe. BMC Evolutionary Biology, 2007, 7, 144.	3.2	19
47	Contrasting phylogeographic patterns in Sphagnum fimbriatum and Sphagnum squarrosum (Bryophyta, Sphagnopsida) in Europe. New Phytologist, 2006, 172, 784-794.	7.3	31
48	Phylogeographic analyses reveal distinct lineages of the liverworts Metzgeria furcata (L.) Dumort. and Metzgeria conjugata Lindb. (Metzgeriaceae) in Europe and North America. Biological Journal of the Linnean Society, 0, 98, 745-756.	1.6	55