Jian-Bin Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2549550/publications.pdf

Version: 2024-02-01

		31976	30922
145	11,010	53	102
papers	citations	h-index	g-index
150	150	150	15717
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Self-assembled dipoles of <i>o</i> -carborane on gate oxide tuning charge carriers in organic field effect transistors. Journal of Materials Chemistry C, 2022, 10, 2690-2695.	5.5	2
2	ZnO electron transporting layer engineering realized over 20% efficiency and over 1.28 V openâ€circuit voltage in allâ€inorganic perovskite solar cells. EcoMat, 2022, 4, .	11.9	23
3	Pushing the Efficiency of High Openâ€Circuit Voltage Binary Organic Solar Cells by Vertical Morphology Tuning. Advanced Science, 2022, 9, e2200578.	11.2	51
4	40 GHz waveguide-integrated two-dimensional palladium diselenide photodetectors. Applied Physics Letters, 2022, 120, .	3.3	4
5	Generation and Detection of Strain-Localized Excitons in WS ₂ Monolayer by Plasmonic Metal Nanocrystals. ACS Nano, 2022, 16, 10647-10656.	14.6	14
6	Enhancing lightâ€matter interaction in <scp>2D</scp> materials by optical micro/nano architectures for highâ€performance optoelectronic devices. InformaÄnÃ-Materiály, 2021, 3, 36-60.	17.3	59
7	Uncovering the Electronâ€Phonon Interplay and Dynamical Energyâ€Dissipation Mechanisms of Hot Carriers in Hybrid Lead Halide Perovskites. Advanced Energy Materials, 2021, 11, 2003071.	19.5	28
8	In Situ Ultrafast and Patterned Growth of Transition Metal Dichalcogenides from Inkjetâ€Printed Aqueous Precursors. Advanced Materials, 2021, 33, e2100260.	21.0	36
9	Lead Halide Perovskites: Uncovering the Electronâ€Phonon Interplay and Dynamical Energyâ€Dissipation Mechanisms of Hot Carriers in Hybrid Lead Halide Perovskites (Adv. Energy Mater. 9/2021). Advanced Energy Materials, 2021, 11, 2170036.	19.5	0
10	Control over Light Soaking Effect in Allâ€Inorganic Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2101287.	14.9	25
11	Enhanced Electrochemical Stability by Alkyldiammonium in Dion–Jacobson Perovskite toward Ultrastable Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100243.	7.3	21
12	Controlled Synthesis of MoxW1–xTe2 Atomic Layers with Emergent Quantum States. ACS Nano, 2021, 15, 11526-11534.	14.6	12
13	Ultraâ€Narrowband Photodetector with High Responsivity Enabled by Integrating Monolayer Jâ€Aggregate Organic Crystal with Graphene. Advanced Optical Materials, 2021, 9, 2100158.	7.3	15
14	Defect Etching of Phaseâ€Transitionâ€Assisted CVDâ€Grown 2Hâ€MoTe ₂ . Small, 2021, 17, e21021	1 46 0.0	9
15	2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science, 2021, 373, 1353-1358.	12.6	177
16	Suppressed Phase Segregation in Highâ€Humidityâ€Processed Dion–Jacobson Perovskite Solar Cells Toward High Efficiency and Stability. Solar Rrl, 2021, 5, 2100555.	5.8	6
17	The compatibility of methylammonium and formamidinium in mixed cation perovskite: the optoelectronic and stability properties. Nanotechnology, 2021, 32, 075406.	2.6	14
18	Investigation on the Fano-Type Asymmetry in Atomic Semiconductor Coupled to the Plasmonic Lattice. ACS Photonics, 2021, 8, 3583-3590.	6.6	6

#	Article	IF	CITATIONS
19	Synthesis and Characterization of Metallic Janus MoSH Monolayer. ACS Nano, 2021, 15, 20319-20331.	14.6	47
20	Interlayer Crossâ€Linked 2D Perovskite Solar Cell with Uniform Phase Distribution and Increased Exciton Coupling. Solar Rrl, 2020, 4, 1900578.	5.8	39
21	Understanding Charge Transport in All-Inorganic Halide Perovskite Nanocrystal Thin-Film Field Effect Transistors. ACS Energy Letters, 2020, 5, 2614-2623.	17.4	39
22	Carbon Dot-Based Composite Films for Simultaneously Harvesting Raindrop Energy and Boosting Solar Energy Conversion Efficiency in Hybrid Cells. ACS Nano, 2020, 14, 10359-10369.	14.6	47
23	An Acoustic Metaâ€Skin Insulator. Advanced Materials, 2020, 32, e2002251.	21.0	26
24	Experimental Observation of Ultrahigh Mobility Anisotropy of Organic Semiconductors in the Two-Dimensional Limit. ACS Applied Electronic Materials, 2020, 2, 2888-2894.	4.3	6
25	Cascade Typeâ€II 2D/3D Perovskite Heterojunctions for Enhanced Stability and Photovoltaic Efficiency. Solar Rrl, 2020, 4, 2000282.	5.8	18
26	Towards Scalable Fabrications and Applications of 2D Layered Material-based Vertical and Lateral Heterostructures. Chemical Research in Chinese Universities, 2020, 36, 525-550.	2.6	6
27	Size Modulation and Heterovalent Doping Facilitated Hybrid Organic and Perovskite Quantum Dot Bulk Heterojunction Solar Cells. ACS Applied Energy Materials, 2020, 3, 11359-11367.	5.1	14
28	Observation of Strong $\langle i \rangle J \langle i \rangle$ -Aggregate Light Emission in Monolayer Molecular Crystal on Hexagonal Boron Nitride. Journal of Physical Chemistry A, 2020, 124, 7340-7345.	2.5	8
29	Bound-States-in-Continuum Hybrid Integration of 2D Platinum Diselenide on Silicon Nitride for High-Speed Photodetectors. ACS Photonics, 2020, 7, 2643-2649.	6.6	32
30	Fully Biodegradable Water Droplet Energy Harvester Based on Leaves of Living Plants. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56060-56067.	8.0	69
31	High-speed infrared two-dimensional platinum diselenide photodetectors. Applied Physics Letters, 2020, 116, .	3.3	33
32	Bifunctional Effects of Trichloro(octyl)silane Modification on the Performance and Stability of a Perovskite Solar Cell via Microscopic Characterization Techniques. ACS Applied Energy Materials, 2020, 3, 3302-3309.	5.1	11
33	Efficient Electronic Transport in Partially Disordered Co ₃ O ₄ Nanosheets for Electrocatalytic Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 3071-3081.	5.1	27
34	Effects of Alkyl Chain Length on Crystal Growth and Oxidation Process of Two-Dimensional Tin Halide Perovskites. ACS Energy Letters, 2020, 5, 1422-1429.	17.4	112
35	Growth dynamics and photoresponse of the Wadsley phase V ₆ O ₁₃ crystals. Journal of Materials Chemistry C, 2020, 8, 6470-6477.	5 . 5	8
36	Efficient Slantwise Aligned Dion–Jacobson Phase Perovskite Solar Cells Based on Transâ€1,4â€Cyclohexanediamine. Small, 2020, 16, e2003098.	10.0	33

#	Article	IF	CITATIONS
37	Thicknessâ€Dependent Optical Properties and Inâ€Plane Anisotropic Raman Response of the 2D βâ€În 2 S 3. Advanced Optical Materials, 2019, 7, 1901085.	7.3	39
38	An Interlayer with Strong Pb-Cl Bond Delivers Ultraviolet-Filter-Free, Efficient, and Photostable Perovskite Solar Cells. IScience, 2019, 21, 217-227.	4.1	43
39	Hybrid 2Dâ€Material Photonics with Bound States in the Continuum. Advanced Optical Materials, 2019, 7, 1901306.	7. 3	43
40	Size and crystallinity control of dispersed VO ₂ particles for modulation of metal–insulator transition temperature and hysteresis. CrystEngComm, 2019, 21, 5749-5756.	2.6	16
41	Ag-Doped Halide Perovskite Nanocrystals for Tunable Band Structure and Efficient Charge Transport. ACS Energy Letters, 2019, 4, 534-541.	17.4	96
42	Thermal and illumination effects on a Pbl ₂ nanoplate and its transformation to CH ₃ NH ₃ Pbl ₃ perovskite. CrystEngComm, 2019, 21, 736-740.	2.6	4
43	Perovskite Bifunctional Device with Improved Electroluminescent and Photovoltaic Performance through Interfacial Energyâ€Band Engineering. Advanced Materials, 2019, 31, e1902543.	21.0	62
44	van der Waals Transition-Metal Oxide for Vis–MIR Broadband Photodetection via Intercalation Strategy. ACS Applied Materials & Strategy. ACS	8.0	36
45	Interlayer Interaction Enhancement in Ruddlesden–Popper Perovskite Solar Cells toward High Efficiency and Phase Stability. ACS Energy Letters, 2019, 4, 1025-1033.	17.4	64
46	Direct Observation of Charge Injection of Graphene in the Graphene/WSe ₂ Heterostructure by Optical-Pump Terahertz-Probe Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47501-47506.	8.0	19
47	A centrifugal microfluidic pressure regulator scheme for continuous concentration control in droplet-based microreactors. Lab on A Chip, 2019, 19, 3870-3879.	6.0	19
48	Guanidinium doping enabled low-temperature fabrication of high-efficiency all-inorganic CsPbI ₂ Br perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 27640-27647.	10.3	56
49	Strong optical response and light emission from a monolayer molecular crystal. Nature Communications, 2019, 10, 5589.	12.8	59
50	Tertiary Amines Differentiated from Primary and Secondary Amines by Active Esterâ€Functionalized Hexabenzoperylene in Field Effect Transistors. Chemistry - an Asian Journal, 2019, 14, 1676-1680.	3.3	15
51	Highly Confined and Tunable Hyperbolic Phonon Polaritons in Van Der Waals Semiconducting Transition Metal Oxides. Advanced Materials, 2018, 30, e1705318.	21.0	178
52	Recent Advances of Solution-Processed Metal Oxide Thin-Film Transistors. ACS Applied Materials & Interfaces, 2018, 10, 25878-25901.	8.0	183
53	Phonon Polaritons: Highly Confined and Tunable Hyperbolic Phonon Polaritons in Van Der Waals Semiconducting Transition Metal Oxides (Adv. Mater. 13/2018). Advanced Materials, 2018, 30, 1870091.	21.0	1
54	Deterministic and Etchingâ€Free Transfer of Largeâ€Scale 2D Layered Materials for Constructing Interlayer Coupled van der Waals Heterostructures. Advanced Materials Technologies, 2018, 3, 1700282.	5.8	26

#	Article	IF	CITATIONS
55	Broadside Nanoantennas Made of Single Silver Nanorods. ACS Nano, 2018, 12, 1720-1731.	14.6	24
56	Fusedâ€Ring Electron Acceptor ITICâ€Th: A Novel Stabilizer for Halide Perovskite Precursor Solution. Advanced Energy Materials, 2018, 8, 1703399.	19.5	112
57	1T′ Transition Metal Telluride Atomic Layers for Plasmon-Free SERS at Femtomolar Levels. Journal of the American Chemical Society, 2018, 140, 8696-8704.	13.7	192
58	General Nondestructive Passivation by 4â€Fluoroaniline for Perovskite Solar Cells with Improved Performance and Stability. Small, 2018, 14, e1803350.	10.0	82
59	Graphene/In ₂ S ₃ van der Waals Heterostructure for Ultrasensitive Photodetection. ACS Photonics, 2018, 5, 4912-4919.	6.6	36
60	Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nature Communications, 2018, 9, 4909.	12.8	117
61	Hybrid Integration of Black Phosphorus-WSe <inf>2</inf> Heterojunction Photodetector on Silicon Waveguide., 2018,,.		0
62	Abnormal Synergetic Effect of Organic and Halide Ions on the Stability and Optoelectronic Properties of a Mixed Perovskite via In Situ Characterizations. Advanced Materials, 2018, 30, e1801562.	21.0	55
63	Enhanced Photoresponse in Interfacial Gated Graphene Phototransistor With Ultrathin Al ₂ O ₃ Dielectric. IEEE Electron Device Letters, 2018, 39, 987-990.	3.9	8
64	Improving the Quality of the Si/Cu ₂ O Interface by Methylâ€Group Passivation and Its Application in Photovoltaic Devices. Advanced Materials Interfaces, 2017, 4, 1600833.	3.7	9
65	Realization of vertical and lateral van der Waals heterojunctions using two-dimensional layered organic semiconductors. Nano Research, 2017, 10, 1336-1344.	10.4	30
66	Epitaxial Stitching and Stacking Growth of Atomically Thin Transitionâ€Metal Dichalcogenides (TMDCs) Heterojunctions. Advanced Functional Materials, 2017, 27, 1603884.	14.9	73
67	Controlled Electrochemical Deposition of Largeâ€Area MoS ₂ on Graphene for Highâ€Responsivity Photodetectors. Advanced Functional Materials, 2017, 27, 1603998.	14.9	45
68	Growth of Large-Scale, Large-Size, Few-Layered α-MoO ₃ on SiO ₂ and Its Photoresponse Mechanism. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5543-5549.	8.0	50
69	Largeâ€Grain Formamidinium Pbl _{3–} <i>_x</i> Br <i>_x</i> for Highâ€Performance Perovskite Solar Cells via Intermediate Halide Exchange. Advanced Energy Materials, 2017, 7, 1601882.	19.5	76
70	A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?. Npj 2D Materials and Applications, 2017, 1, .	7.9	211
71	Crystallinity Preservation and Ion Migration Suppression through Dual Ion Exchange Strategy for Stable Mixed Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700118.	19.5	74
72	Highly Sensitive and Broadband Organic Photodetectors with Fast Speed Gain and Large Linear Dynamic Range at Low Forward Bias. Small, 2017, 13, 1603260.	10.0	102

#	Article	IF	CITATIONS
73	Perovskite Solar Cells: Largeâ€Grain Formamidinium Pbl _{3–} <i>_x</i> Br <i>_x</i> for Highâ€Performance Perovskite Solar Cells via Intermediate Halide Exchange (Adv. Energy Mater. 12/2017). Advanced Energy Materials, 2017, 7, .	19.5	2
74	Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Applied Physics Reviews, 2017, 4 , .	11.3	476
75	Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. ACS Nano, 2017, 11, 4507-4513.	14.6	435
76	High-Performance Broadband Floating-Base Bipolar Phototransistor Based on WSe ₂ /BP/MoS ₂ Heterostructure. ACS Photonics, 2017, 4, 823-829.	6.6	89
77	Centimeter-Scale CVD Growth of Highly Crystalline Single-Layer MoS ₂ Film with Spatial Homogeneity and the Visualization of Grain Boundaries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12073-12081.	8.0	120
78	Synergistic Effects of Plasmonics and Electron Trapping in Graphene Short-Wave Infrared Photodetectors with Ultrahigh Responsivity. ACS Nano, 2017, 11, 430-437.	14.6	192
79	Graphene Based Terahertz Light Modulator in Total Internal Reflection Geometry. Advanced Optical Materials, 2017, 5, 1600697.	7.3	41
80	Analyzing the Carrier Mobility in Transitionâ€Metal Dichalcogenide MoS ₂ Fieldâ€Effect Transistors. Advanced Functional Materials, 2017, 27, 1604093.	14.9	265
81	A Simple Method for Synthesis of Highâ€Quality Millimeterâ€Scale 1T′ Transitionâ€Metal Telluride and Nearâ€Field Nanooptical Properties. Advanced Materials, 2017, 29, 1700704.	21.0	101
82	High-Quality Monolithic Graphene Films via Laterally Stitched Growth and Structural Repair of Isolated Flakes for Transparent Electronics. Chemistry of Materials, 2017, 29, 7808-7815.	6.7	38
83	Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride. Science Advances, 2017, 3, e1701186.	10.3	146
84	Hybrid graphene tunneling photoconductor with interface engineering towards fast photoresponse and high responsivity. Npj 2D Materials and Applications, 2017, 1 , .	7.9	77
85	Integration of inverse nanocone array based bismuth vanadate photoanodes and bandgap-tunable perovskite solar cells for efficient self-powered solar water splitting. Journal of Materials Chemistry A, 2017, 5, 19091-19097.	10.3	55
86	Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Science Advances, 2017, 3, e1700589.	10.3	419
87	Flexible vertical field-effect transistor based on graphene/silicon heterostructure with ion-gel gate. , 2017, , .		0
88	Quantitative Analysis of Scattering Mechanisms in Highly Crystalline CVD MoS ₂ through a Self-Limited Growth Strategy by Interface Engineering. Small, 2016, 12, 438-445.	10.0	25
89	Electron Mobility Exceeding 10 cm ² V ^{â^'1} s ^{â^'1} and Bandâ€Like Charge Transport in Solutionâ€Processed nâ€Channel Organic Thinâ€Film Transistors. Advanced Materials, 2016, 28, 5276-5283.	21.0	173
90	Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions. Nano Letters, 2016, 16, 3754-3759.	9.1	92

#	Article	IF	Citations
91	Nearâ€Infrared Photoresponse of Oneâ€Sided Abrupt MAPbl ₃ /TiO ₂ Heterojunction through a Tunneling Process. Advanced Functional Materials, 2016, 26, 8545-8554.	14.9	23
92	Nonstoichiometric acid–base reaction as reliable synthetic route to highly stable CH3NH3Pbl3 perovskite film. Nature Communications, 2016, 7, 13503.	12.8	94
93	Facet-Dependent Property of Sequentially Deposited Perovskite Thin Films: Chemical Origin and Self-Annihilation. ACS Applied Materials & Self-Annihilation. ACS Applied Materials & Self-Annihilation. ACS Applied Materials & Self-Annihilation.	8.0	19
94	Epitaxial Ultrathin Organic Crystals on Graphene for Highâ€Efficiency Phototransistors. Advanced Materials, 2016, 28, 5200-5205.	21.0	134
95	Fibrous Epoxy Substrate with High Thermal Conductivity and Low Dielectric Property for Flexible Electronics. Advanced Electronic Materials, 2016, 2, 1500485.	5.1	63
96	Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. Journal of Materials Chemistry C, 2016, 4, 6037-6044.	5.5	88
97	Unusual electronic and magnetic properties of lateral phosphorene–WSe2 heterostructures. Journal of Materials Chemistry C, 2016, 4, 6657-6665.	5.5	10
98	Rapid growth of high quality perovskite crystal by solvent mixing. CrystEngComm, 2016, 18, 1184-1189.	2.6	6
99	Near-Infrared Photodetector Based on MoS ₂ /Black Phosphorus Heterojunction. ACS Photonics, 2016, 3, 692-699.	6.6	446
100	Ultrathin efficient perovskite solar cells employing a periodic structure of a composite hole conductor for elevated plasmonic light harvesting and hole collection. Nanoscale, 2016, 8, 6290-6299.	5.6	69
101	Lateral Builtâ€In Potential of Monolayer MoS ₂ –WS ₂ Inâ€Plane Heterostructures by a Shortcut Growth Strategy. Advanced Materials, 2015, 27, 6431-6437.	21.0	191
102	High Responsivity, Broadband, and Fast Graphene/Silicon Photodetector in Photoconductor Mode. Advanced Optical Materials, 2015, 3, 1207-1214.	7.3	141
103	Graphene photodetector integrated on silicon nitride waveguide. Journal of Applied Physics, 2015, 117, .	2.5	46
104	Enhanced Performance of Polymeric Bulk Heterojunction Solar Cells via Molecular Doping with TFSA. ACS Applied Materials & Doping with TFSA.	8.0	23
105	Aqueous Solution-Deposited Gallium Oxide Dielectric for Low-Temperature, Low-Operating-Voltage Indium Oxide Thin-Film Transistors: A Facile Route to Green Oxide Electronics. ACS Applied Materials & Amp; Interfaces, 2015, 7, 14720-14725.	8.0	60
106	Facile and Environmentally Friendly Solution-Processed Aluminum Oxide Dielectric for Low-Temperature, High-Performance Oxide Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5803-5810.	8.0	139
107	Highâ€Performance Grapheneâ€Based Hole Conductorâ€Free Perovskite Solar Cells: Schottky Junction Enhanced Hole Extraction and Electron Blocking. Small, 2015, 11, 2269-2274.	10.0	233
108	Observation of a giant two-dimensional band-piezoelectric effect on biaxial-strained graphene. NPG Asia Materials, 2015, 7, e154-e154.	7.9	58

#	Article	IF	CITATIONS
109	Monolayer Fieldâ€Effect Transistors of Nonplanar Organic Semiconductors with Brickwork Arrangement. Advanced Materials, 2015, 27, 3418-3423.	21.0	85
110	Hybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering behind Device Processing for High Efficiency. Journal of the American Chemical Society, 2015, 137, 4460-4468.	13.7	586
111	A novel solid-to-solid electrocatalysis of graphene oxide reduction on copper electrode. RSC Advances, 2015, 5, 87987-87992.	3.6	7
112	Electronic Properties of MoS ₂ –WS ₂ Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy. ACS Nano, 2015, 9, 9868-9876.	14.6	283
113	Variable electronic properties of lateral phosphorene–graphene heterostructures. Physical Chemistry Chemical Physics, 2015, 17, 31685-31692.	2.8	16
114	Facile passivation of solution-processed InZnO thin-film transistors by octadecylphosphonic acid self-assembled monolayers at room temperature. Applied Physics Letters, 2014, 104, .	3.3	32
115	Two-dimensional quasi-freestanding molecular crystals for high-performance organic field-effect transistors. Nature Communications, 2014, 5, 5162.	12.8	315
116	Influence of Annealing on Raman Spectrum of Graphene in Different Gaseous Environments. Spectroscopy Letters, 2014, 47, 465-470.	1.0	7
117	Nanoantennaâ€Sandwiched Graphene with Giant Spectral Tuning in the Visibleâ€toâ€Nearâ€Infrared Region. Advanced Optical Materials, 2014, 2, 162-170.	7.3	39
118	Configuration-dependent electronic and magnetic properties of graphene monolayers and nanoribbons functionalized with aryl groups. Journal of Chemical Physics, 2014, 140, 044712.	3.0	8
119	In-Plane Optical Absorption and Free Carrier Absorption in Graphene-on-Silicon Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 43-48.	2.9	7 5
120	Low-temperature facile solution-processed gate dielectric for combustion derived oxide thin film transistors. RSC Advances, 2014, 4, 54729-54739.	3.6	44
121	Ternary Bulk Heterojunction Photovoltaic Cells Composed of Small Molecule Donor Additive as Cascade Material. Journal of Physical Chemistry C, 2014, 118, 20094-20099.	3.1	28
122	The role of solution-processed high- $\hat{\Gamma}^0$ gate dielectrics in electrical performance of oxide thin-film transistors. Journal of Materials Chemistry C, 2014, 2, 5389.	5.5	133
123	Ternary blend bulk heterojunction photovoltaic cells with an ambipolar small molecule as the cascade material. RSC Advances, 2014, 4, 1087-1092.	3.6	20
124	Ultra‣ow Work Function Transparent Electrodes Achieved by Naturally Occurring Biomaterials for Organic Optoelectronic Devices. Advanced Materials Interfaces, 2014, 1, 1400215.	3.7	40
125	Spectroscopic Study of Electron and Hole Polarons in a High-Mobility Donor–Acceptor Conjugated Copolymer. Journal of Physical Chemistry C, 2013, 117, 6835-6841.	3.1	29
126	High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 2013, 7, 888-891.	31.4	731

#	Article	IF	Citations
127	Controllable modulation of the electronic properties of graphene and silicene by interface engineering and pressure. Journal of Materials Chemistry C, 2013, 1, 4869.	5. 5	28
128	Low-voltage flexible pentacene thin film transistors with a solution-processed dielectric and modified copper source–drain electrodes. Journal of Materials Chemistry C, 2013, 1, 2585.	5.5	12
129	Polarization dependent loss of graphene-on-silicon waveguides. , 2013, , .		1
130	Study of the electron standing wave states in scanning tunneling spectroscopy of Si(111) surface. Surface and Interface Analysis, 2013, 45, 962-967.	1.8	2
131	Induced crystallization of rubrene with diazapentacene as the template. Journal of Materials Chemistry, 2012, 22, 4396.	6.7	19
132	P-N Junction Formation in Electron-beam Irradiated Graphene Step. Materials Research Society Symposia Proceedings, 2012, 1407, 224.	0.1	0
133	Derivitization of pristine graphene for bulk heterojunction polymeric photovoltaic devices. Journal of Materials Chemistry, 2012, 22, 16723.	6.7	16
134	The influence of gate dielectrics on a high-mobility n-type conjugated polymer in organic thin-film transistors. Applied Physics Letters, 2012, 100, 033301.	3.3	41
135	Single crystal n-channel field effect transistors from solution-processed silylethynylated tetraazapentacene. Journal of Materials Chemistry, 2011, 21, 15201.	6.7	48
136	Synthesis of Multishell Carbon Nanotube Composites via Template Method. Chinese Journal of Chemical Physics, 2011, 24, 206-210.	1.3	2
137	Highly Sensitive Glucose Biosensors Based on Organic Electrochemical Transistors Using Platinum Gate Electrodes Modified with Enzyme and Nanomaterials. Advanced Functional Materials, 2011, 21, 2264-2272.	14.9	243
138	Stability Improvement of Polymer Based Solar Cells by Thermally Evaporated Cr2O3 Interfacial Layer. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	0
139	Induced Crystallization of Rubrene in Thinâ€Film Transistors (Adv. Mater. 30/2010). Advanced Materials, 2010, 22, .	21.0	4
140	Electrical switching behavior from ultrathin potential barrier of self-assembly molecules tuned by interfacial charge trapping. Applied Physics Letters, 2010, 96, .	3.3	15
141	Performance and Stability Improvement of P3HT:PCBM-Based Solar Cells by Thermally Evaporated Chromium Oxide (CrO _{<i>x</i>}) Interfacial Layer. ACS Applied Materials & Interfaces, 2010, 2, 2699-2702.	8.0	68
142	A Meaningful Analogue of Pentacene: Charge Transport, Polymorphs, and Electronic Structures of Dihydrodiazapentacene. Chemistry of Materials, 2009, 21, 1400-1405.	6.7	63
143	Stable field emission with low threshold field from amorphous carbon films due to layer-by-layer hydrogen plasma annealing. Journal of Applied Physics, 2002, 91, 5434-5437.	2.5	6
144	VERY LOW THRESHOLD ELECTRON FIELD EMISSION FROM AMORPHOUS CARBON FILMS WITH HYDROGEN DILUTION. International Journal of Modern Physics B, 2002, 16, 988-992.	2.0	0

#	Article	IF	CITATIONS
145	Vacuum electron emission with low turn-on electric field from hydrogenated amorphous carbon thin films. Applied Physics Letters, 2001, 79, 141-143.	3.3	20