
John D Elsworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2549194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pioglitazone transiently stimulates paraoxonase-2 expression in male nonhuman primate brain: Implications for sex-specific therapeutics in neurodegenerative disorders. Neurochemistry International, 2022, 152, 105222.	3.8	9
2	Expression of PON2 isoforms varies among brain regions in male and female African green monkeys. Free Radical Biology and Medicine, 2022, 178, 215-218.	2.9	2
3	Intrathecal amyloidâ€beta oligomer administration increases tau phosphorylation in the medial temporal lobe in the African green monkey: A nonhuman primate model of Alzheimer's disease. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	5
4	PPAR $\hat{1}^3$ /PGC1 $\hat{1}$ ± signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. , 2021, 219, 107705.		77
5	Sex-based disparity in paraoxonase-2 expression in the brains of African green monkeys. Free Radical Biology and Medicine, 2021, 167, 201-204.	2.9	4
6	An updated insight into the molecular pathogenesis, secondary complications and potential therapeutics of COVID-19 pandemic. Life Sciences, 2020, 257, 118105.	4.3	55
7	Gene therapy and immunotherapy as promising strategies to combat Huntington's disease-associated neurodegeneration: emphasis on recent updates and future perspectives. Expert Review of Neurotherapeutics, 2020, 20, 1123-1141.	2.8	7
8	Generation of Pluripotent Stem Cells Using Somatic Cell Nuclear Transfer and Induced Pluripotent Somatic Cells from African Green Monkeys. Stem Cells and Development, 2020, 29, 1294-1307.	2.1	4
9	Parkinson's disease treatment: past, present, and future. Journal of Neural Transmission, 2020, 127, 785-791.	2.8	29
10	Pioglitazone activates paraoxonase-2 in the brain: A novel neuroprotective mechanism. Experimental Neurology, 2020, 327, 113234.	4.1	18
11	ERK-independent African Green monkey pluripotent stem cells in a putative chimera-competent state. Biochemical and Biophysical Research Communications, 2019, 510, 78-84.	2.1	7
12	Human-Monkey Chimeras for Modeling Human Disease: Opportunities and Challenges. Methods in Molecular Biology, 2019, 2005, 221-231.	0.9	9
13	Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease. Journal of Parkinson's Disease, 2018, 8, 161-181.	2.8	89
14	Human–Monkey Chimeras for Modeling Human Disease: Opportunities and Challenges. Stem Cells and Development, 2018, 27, 1599-1604.	2.1	8
15	Cognitive performance of juvenile monkeys after chronic fluoxetine treatment. Developmental Cognitive Neuroscience, 2017, 26, 52-61.	4.0	17
16	Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature, 2017, 550, 119-123.	27.8	329
17	Molecular and cellular reorganization of neural circuits in the human lineage. Science, 2017, 358, 1027-1032.	12.6	192
18	Neural Stem Cells Derived from Human Parthenogenetic Stem Cells Engraft and Promote Recovery in a Nonhuman Primate Model of Parkinson's Disease. Cell Transplantation, 2016, 25, 1945-1966.	2.5	59

JOHN D ELSWORTH

#	Article	IF	CITATIONS
19	Developmental expression of paraoxonase 2. Chemico-Biological Interactions, 2016, 259, 168-174.	4.0	19
20	Acylated but not desâ€acyl ghrelin is neuroprotective in an <scp>MPTP</scp> mouse model of Parkinson's disease. Journal of Neurochemistry, 2016, 137, 460-471.	3.9	44
21	Large neutral amino acids levels in primate cerebrospinal fluid do not confirm competitive transport under baseline conditions. Brain Research, 2016, 1648, 372-379.	2.2	6
22	Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease. Journal of Neuroscience, 2016, 36, 3049-3063.	3.6	128
23	Metformin Prevents Nigrostriatal Dopamine Degeneration Independent of AMPK Activation in Dopamine Neurons. PLoS ONE, 2016, 11, e0159381.	2.5	63
24	Low circulating levels of bisphenolâ€A induce cognitive deficits and loss of asymmetric spine synapses in dorsolateral prefrontal cortex and hippocampus of adult male monkeys. Journal of Comparative Neurology, 2015, 523, 1248-1257.	1.6	40
25	Primate Phencyclidine Model of Schizophrenia: Sex-Specific Effects on Cognition, Brain Derived Neurotrophic Factor, Spine Synapses, and Dopamine Turnover in Prefrontal Cortex. International Journal of Neuropsychopharmacology, 2015, 18, pyu048-pyu048.	2.1	13
26	In the Blink of an Eye: Relating Positive-Feedback Sensitivity to Striatal Dopamine D ₂ -Like Receptors through Blink Rate. Journal of Neuroscience, 2014, 34, 14443-14454.	3.6	135
27	Survival and Integration of Neurons Derived from Human Embryonic Stem Cells in MPTP-Lesioned Primates. Cell Transplantation, 2014, 23, 981-994.	2.5	15
28	Pregnancy, a Risky Time: Keep Calm, Clean, and Carry On!. Biological Psychiatry, 2013, 74, 478-479.	1.3	0
29	Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. NeuroToxicology, 2013, 35, 113-120.	3.0	106
30	Comparison of Fetal Mesencephalic Grafts, AAV-delivered GDNF, and Both Combined in an MPTP-induced Nonhuman Primate Parkinson's Model. Molecular Therapy, 2013, 21, 2160-2168.	8.2	19
31	Loss of asymmetric spine synapses in prefrontal cortex of motor-asymptomatic, dopamine-depleted, cognitively impaired MPTP-treated monkeys. International Journal of Neuropsychopharmacology, 2013, 16, 905-912.	2.1	18
32	Coordinated expression of dopamine transporter and vesicular monoamine transporter in the primate striatum during development. Synapse, 2013, 67, 580-585.	1.2	0
33	Asenapine effects on cognitive and monoamine dysfunction elicited by subchronic phencyclidine administration. Neuropharmacology, 2012, 62, 1442-1452.	4.1	34
34	Impact of methamphetamine on dopamine neurons in primates is dependent on age: implications for development of Parkinson's disease. Neuroscience, 2011, 189, 277-285.	2.3	45
35	Loss of asymmetric spine synapses in dorsolateral prefrontal cortex of cognitively impaired phencyclidine-treated monkeys. International Journal of Neuropsychopharmacology, 2011, 14, 1411-1415.	2.1	14
36	Phencyclidine-induced Loss of Asymmetric Spine Synapses in Rodent Prefrontal Cortex is Reversed by Acute and Chronic Treatment with Olanzapine. Neuropsychopharmacology, 2011, 36, 2054-2061.	5.4	38

JOHN D ELSWORTH

#	Article	IF	CITATIONS
37	Ghrelin Promotes and Protects Nigrostriatal Dopamine Function via a UCP2-Dependent Mitochondrial Mechanism. Journal of Neuroscience, 2009, 29, 14057-14065.	3.6	245
38	Clonidine and guanfacine attenuate phencyclidine-induced dopamine overflow in rat prefrontal cortex: Mediating influence of the alpha-2A adrenoceptor subtype. Brain Research, 2008, 1246, 41-46.	2.2	16
39	Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson's disease. Experimental Neurology, 2008, 211, 362-369.	4.1	86
40	Clozapine Normalizes Prefrontal Cortex Dopamine Transmission in Monkeys Subchronically Exposed to Phencyclidine. Neuropsychopharmacology, 2008, 33, 491-496.	5.4	22
41	Apoptotic natural cell death in developing primate dopamine midbrain neurons occurs during a restricted period in the second trimester of gestation. Experimental Neurology, 2007, 204, 802-807.	4.1	21
42	Prenatal exposure to cocaine is associated with increased number of spine synapses in rat prelimbic cortex. Synapse, 2007, 61, 862-865.	1.2	26
43	Repeated phencyclidine in monkeys results in loss of parvalbumin-containing axo-axonic projections in the prefrontal cortex. Psychopharmacology, 2007, 192, 283-290.	3.1	56
44	Development of A9/A10 dopamine neurons during the second and third trimesters in the African green monkey. Journal of Comparative Neurology, 2005, 488, 215-223.	1.6	10
45	Prenatal exposure to cocaine selectively disrupts the development of parvalbumin containing local circuit neurons in the medial prefrontal cortex of the rat. Synapse, 2005, 56, 1-11.	1.2	20
46	Uncoupling Protein-2 Is Critical for Nigral Dopamine Cell Survival in a Mouse Model of Parkinson's Disease. Journal of Neuroscience, 2005, 25, 184-191.	3.6	181
47	Axo-Axonic Structures in the Medial Prefrontal Cortex of the Rat: Reduction by Prenatal Exposure to Cocaine. Journal of Neuroscience, 2003, 23, 5227-5234.	3.6	25
48	Selective Increase in Dopamine Utilization in the Shell Subdivision of the Nucleus Accumbens by the Benzodiazepine Inverse Agonist FG 7142. Journal of Neurochemistry, 2002, 65, 770-774.	3.9	39
49	Blockade of FG 7142-Induced Increased Dopamine Utilization by the Glycine/NMDA Receptor Antagonist (+)-HA 966. Journal of Neurochemistry, 2002, 66, 1959-1962.	3.9	8
50	Fear-like biochemical and behavioral responses in rats to the predator odor, TMT, are dependent on the exposure environment. Synapse, 2002, 46, 11-18.	1.2	75
51	Prenatal exposure to cocaine reduces the number and enhances reactivity of A10 dopaminergic neurons to environmental stress. Synapse, 2001, 41, 337-344.	1.2	22
52	Prenatal cocaine exposure increases mesoprefrontal dopamine neuron responsivity to mild stress. Synapse, 2001, 42, 80-83.	1.2	24
53	Divergent effects of putative anxiolytics on stress-induced Fos expression in the mesoprefrontal system of the rat. Synapse, 2000, 36, 143-154.	1.2	53
54	Estrogen Is Essential for Maintaining Nigrostriatal Dopamine Neurons in Primates: Implications for Parkinson's Disease and Memory. Journal of Neuroscience, 2000, 20, 8604-8609.	3.6	244

JOHN D ELSWORTH

#	Article	IF	CITATIONS
55	Dopamine D 4 receptor antagonist reversal of subchronic phencyclidine-induced object retrieval/detour deficits in monkeys. Psychopharmacology, 1999, 142, 78-84.	3.1	86
56	Biochemical and behavioral anxiolytic-like effects of R (+)HA-966 at the level of the ventral tegmental area in rats. Psychopharmacology, 1999, 143, 227-234.	3.1	25
57	A comparison of the effects of clonidine and CNQX infusion into the locus coeruleus and the amygdala on naloxone-precipitated opiate withdrawal in the rat. Psychopharmacology, 1998, 138, 133-142.	3.1	55
58	Dysregulation of Mesoprefrontal Dopamine Neurons Induced by Acute and Repeated Phencyclidine Administration in the Nonhuman Primate: Implications for Schizophrenia. Advances in Pharmacology, 1997, 42, 810-814.	2.0	19
59	Enduring Cognitive Deficits and Cortical Dopamine Dysfunction in Monkeys After Long-Term Administration of Phencyclidine. Science, 1997, 277, 953-955.	12.6	393
60	Metabolic Energy Capacity of Dopaminergic Grafts and the Implanted Striatum in Parkinsonian Nonhuman Primates as Visualized with Cytochrome Oxidase Histochemistry. Cell Transplantation, 1997, 6, 135-140.	2.5	9
61	Phencyclidine Increases Forebrain Monoamine Metabolism in Rats and Monkeys: Modulation by the Isomers of HA966. Journal of Neuroscience, 1997, 17, 1769-1775.	3.6	74
62	Tyrosine enhances behavioral and mesocorticolimbic dopaminergic responses to aversive conditioning. , 1996, 22, 100-105.		19
63	Preexposure to, but Not Cotreatment with, the Neurotensin Antagonist SR 48692 Delays the Development of Cocaine Sensitization. Neuropsychopharmacology, 1994, 11, 215-222.	5.4	44
64	Neural Transplantation for Neurodegenerative Diseases: Past, Present, and Futurea. Annals of the New York Academy of Sciences, 1993, 695, 258-266.	3.8	17
65	Transplantation advances in parkinson's disease. Movement Disorders, 1989, 4, S120-S125.	3.9	1
66	Biochemical analysis of caudate nucleus biopsy samples from parkinsonian patients. Annals of Neurology, 1988, 24, 685-688.	5.3	9