List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2547938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Transgenic Mouse with a Deletion in the Collagenous Domain of Adiponectin Displays Elevated Circulating Adiponectin and Improved Insulin Sensitivity. Endocrinology, 2004, 145, 367-383.	2.8	480
2	Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. Journal of Cell Biology, 2012, 196, 213-221.	5.2	242
3	A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. Journal of Molecular and Cellular Cardiology, 2012, 53, 323-332.	1.9	193
4	Activation of NF-κB via the IκB Kinase Complex Is Both Essential and Sufficient for Proinflammatory Gene Expression in Primary Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 28451-28458.	3.4	184
5	DAP12-Based Activating Chimeric Antigen Receptor for NK Cell Tumor Immunotherapy. Journal of Immunology, 2015, 194, 3201-3212.	0.8	175
6	Foamy Virus Capsids Require the Cognate Envelope Protein for Particle Export. Journal of Virology, 1999, 73, 2613-2621.	3.4	152
7	Mouse SAMHD1 Has Antiretroviral Activity and Suppresses a Spontaneous Cell-Intrinsic Antiviral Response. Cell Reports, 2013, 4, 689-696.	6.4	139
8	Structural basis for retroviral integration into nucleosomes. Nature, 2015, 523, 366-369.	27.8	133
9	Restriction of diverse retroviruses by SAMHD1. Retrovirology, 2013, 10, 26.	2.0	124
10	Viral infiltration of pancreatic islets in patients with COVID-19. Nature Communications, 2021, 12, 3534.	12.8	120
11	Comparison of Three Retroviral Vector Systems for Transduction of Nonobese Diabetic/Severe Combined Immunodeficiency Mice Repopulating Human CD34+Cord Blood Cells. Human Gene Therapy, 2003, 14, 509-519.	2.7	118
12	A Particle-Associated Glycoprotein Signal Peptide Essential for Virus Maturation and Infectivity. Journal of Virology, 2001, 75, 5762-5771.	3.4	112
13	Overexpression of cdk4 and cyclinD1 triggers greater expansion of neural stem cells in the adult mouse brain. Journal of Experimental Medicine, 2011, 208, 937-948.	8.5	109
14	Improved Primate Foamy Virus Vectors and Packaging Constructs. Journal of Virology, 2002, 76, 3774-3783.	3.4	106
15	Foamy Virus Particle Formation. Journal of Virology, 1998, 72, 1610-1615.	3.4	103
16	Extracellular signal regulated kinase 5 (ERK5) is required for the differentiation of muscle cells. EMBO Reports, 2001, 2, 829-834.	4.5	100
17	Severe immunodeficiency associated with a human immunodeficiency virus 1 NEF/3'-long terminal repeat transgene Journal of Experimental Medicine, 1994, 179, 797-807.	8.5	96
18	Type III TGF-beta receptor-independent signalling of TGF-beta2 via TbetaRII-B, an alternatively spliced TGF-beta type II receptor. EMBO Journal, 2001, 20, 480-490.	7.8	91

#	Article	IF	CITATIONS
19	Novel Humanized and Highly Efficient Bispecific Antibodies Mediate Killing of Prostate Stem Cell Antigen-Expressing Tumor Cells by CD8+ and CD4+ T Cells. Journal of Immunology, 2012, 189, 3249-3259.	0.8	88
20	Ortervirales: New Virus Order Unifying Five Families of Reverse-Transcribing Viruses. Journal of Virology, 2018, 92, .	3.4	79
21	Foamy Virus Biology and Its Application for Vector Development. Viruses, 2011, 3, 561-585.	3.3	76
22	Localization, Dynamics, and Function of Survivin Revealed by Expression of Functional SurvivinDsRed Fusion Proteins in the Living Cell. Molecular Biology of the Cell, 2003, 14, 78-92.	2.1	75
23	A1 expression is stimulated by CD40 in B cells and rescues WEHI 231 cells from anti-IgM-induced cell death. European Journal of Immunology, 1999, 29, 3077-3088.	2.9	73
24	Recognition of apoptotic cells by macrophages activates the peroxisome proliferator-activated receptor-Î ³ and attenuates the oxidative burst. Cell Death and Differentiation, 2006, 13, 1533-1540.	11.2	73
25	Characterization of a <i>cis</i> -Acting Sequence in the <i>pol</i> Region Required To Transfer Human Foamy Virus Vectors. Journal of Virology, 1998, 72, 6307-6314.	3.4	68
26	Species-specific Inhibition of APOBEC3C by the Prototype Foamy Virus Protein Bet. Journal of Biological Chemistry, 2009, 284, 5819-5826.	3.4	63
27	Analysis of Prototype Foamy Virus particle-host cell interaction with autofluorescent retroviral particles. Retrovirology, 2010, 7, 45.	2.0	63
28	TRPV channels mediate temperature-sensing in human corneal endothelial cells. Experimental Eye Research, 2010, 90, 758-770.	2.6	61
29	Restriction of Foamy Viruses by Primate Trim5α. Journal of Virology, 2008, 82, 5429-5439.	3.4	58
30	Versatile Retrovirus Vector Systems for Regulated Gene Expression In Vitro and In Vivo. Molecular Medicine, 1997, 3, 466-476.	4.4	57
31	Foamy Virus Envelope Clycoprotein-Mediated Entry Involves a pH-Dependent Fusion Process. Journal of Virology, 2003, 77, 4722-4730.	3.4	56
32	Novel Functions of Prototype Foamy Virus Gag Glycine- Arginine-Rich Boxes in Reverse Transcription and Particle Morphogenesis. Journal of Virology, 2011, 85, 1452-1463.	3.4	56
33	An Evolutionarily Conserved Positively Charged Amino Acid in the Putative Membrane-Spanning Domain of the Foamy Virus Envelope Protein Controls Fusion Activity. Journal of Virology, 2000, 74, 4474-4482.	3.4	54
34	Characterization of a Human Foamy Virus 170-Kilodalton Env-Bet Fusion Protein Generated by Alternative Splicing. Journal of Virology, 1998, 72, 4088-4094.	3.4	53
35	Characterization of Prototype Foamy Virus Cag Late Assembly Domain Motifs and Their Role in Particle Egress and Infectivity. Journal of Virology, 2005, 79, 5466-5476.	3.4	51
36	CCND1–CDK4–mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo. Journal of Experimental Medicine, 2015, 212, 1171-1183.	8.5	50

DIRK LINDEMANN

#	Article	IF	CITATIONS
37	Spumaretroviruses: Updated taxonomy and nomenclature. Virology, 2018, 516, 158-164.	2.4	50
38	Cells Expressing the Human Foamy Virus (HFV) Accessory Bet Protein Are Resistant to Productive HFV Superinfection. Virology, 1998, 250, 194-204.	2.4	49
39	Prototype Foamy Virus Envelope Glycoprotein Leader Peptide Processing Is Mediated by a Furin-Like Cellular Protease, but Cleavage Is Not Essential for Viral Infectivity. Journal of Virology, 2004, 78, 13865-13870.	3.4	49
40	Feline Foamy Virus Genome and Replication Strategy. Journal of Virology, 2003, 77, 11324-11331.	3.4	48
41	Prototype Foamy Virus Gag Nuclear Localization: a Novel Pathway among Retroviruses. Journal of Virology, 2011, 85, 9276-9285.	3.4	48
42	Heparan Sulfate Is an Attachment Factor for Foamy Virus Entry. Journal of Virology, 2012, 86, 10028-10035.	3.4	47
43	Structural basis for spumavirus GAG tethering to chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5509-5514.	7.1	45
44	C/EBPβ enhances IL-4 but impairs IL-2 and IFN-γ induction in T cells. European Journal of Immunology, 2000, 30, 2576-2585.	2.9	44
45	Foamy Virus Envelope Glycoprotein Is Sufficient for Particle Budding and Release. Journal of Virology, 2003, 77, 2338-2348.	3.4	43
46	Reversal of Blimp-1-mediated apoptosis by A1, a member of the Bcl-2 family. European Journal of Immunology, 1999, 29, 2988-2998.	2.9	39
47	The influence of semenâ€derived enhancer of virus infection on the efficiency of retroviral gene transfer. Journal of Gene Medicine, 2010, 12, 137-146.	2.8	39
48	Efficient intracellular retrotransposition of an exogenous primate retrovirus genome. EMBO Journal, 2000, 19, 3436-3445.	7.8	38
49	A Novel Ex Vivo Isolation and Expansion Procedure for Chimeric Antigen Receptor Engrafted Human T Cells. PLoS ONE, 2014, 9, e93745.	2.5	37
50	Activation-Induced Depletion of Protein Kinase Cα Provokes Desensitization of Monocytes/Macrophages in Sepsis. Journal of Immunology, 2005, 174, 4960-4965.	0.8	35
51	A Small-molecule-controlled System for Efficient Pseudotyping of Prototype Foamy Virus Vectors. Molecular Therapy, 2012, 20, 1167-1176.	8.2	34
52	Mutation of conserved N-glycosylation sites around the CD4-binding site of human immunodeficiency virus type 1 GP120 affects viral infectivity. Virus Research, 1990, 18, 9-20.	2.2	33
53	Lack of Trex1 Causes Systemic Autoimmunity despite the Presence of Antiretroviral Drugs. Journal of Immunology, 2017, 199, 2261-2269.	0.8	31
54	Transduction of human glial and neuronal tumor cells with different lentivirus vector pseudotypes. Journal of Neuro-Oncology, 2004, 70, 281-288.	2.9	30

#	Article	IF	CITATIONS
55	Ubiquitination of the Prototype Foamy Virus Envelope Glycoprotein Leader Peptide Regulates Subviral Particle Release. Journal of Virology, 2005, 79, 15074-15083.	3.4	30
56	Activation of transgenic estrogen receptor-beta by selected phytoestrogens in a stably transduced rat serotonergic cell line. Journal of Steroid Biochemistry and Molecular Biology, 2010, 120, 208-217.	2.5	29
57	A Unique Spumavirus Gag N-terminal Domain with Functional Properties of Orthoretroviral Matrix and Capsid. PLoS Pathogens, 2013, 9, e1003376.	4.7	29
58	Prototype Foamy Virus Protease Activity Is Essential for Intraparticle Reverse Transcription Initiation but Not Absolutely Required for Uncoating upon Host Cell Entry. Journal of Virology, 2013, 87, 3163-3176.	3.4	28
59	Correct Capsid Assembly Mediated by a Conserved YXXLGL Motif in Prototype Foamy Virus Gag Is Essential for Infectivity and Reverse Transcription of the Viral Genome. Journal of Virology, 2007, 81, 3317-3326.	3.4	27
60	Analysis and Function of Prototype Foamy Virus Envelope N Glycosylation. Journal of Virology, 2005, 79, 7664-7672.	3.4	26
61	Subviral Particle Release Determinants of Prototype Foamy Virus. Journal of Virology, 2008, 82, 9858-9869.	3.4	26
62	Orthoretroviral-like prototype foamy virus gag-pol expression is compatible with viral replication. Retrovirology, 2011, 8, 66.	2.0	26
63	Human Procaspase-1 Variants with Decreased Enzymatic Activity Are Associated with Febrile Episodes and May Contribute to Inflammation via RIP2 and NF-ήB Signaling. Journal of Immunology, 2014, 192, 4379-4385.	0.8	26
64	Foamy Virus Budding and Release. Viruses, 2013, 5, 1075-1098.	3.3	24
65	The cooperative function of arginine residues in the Prototype Foamy Virus Gag C-terminus mediates viral and cellular RNA encapsidation. Retrovirology, 2014, 11, 87.	2.0	24
66	ICTV Virus Taxonomy Profile: Retroviridae 2021. Journal of General Virology, 2021, 102, .	2.9	24
67	Efficient transduction and long-term retroviral expression of the melanoma-associated tumor antigen tyrosinase in CD34+ cord blood-derived dendritic cells. Gene Therapy, 2002, 9, 1551-1560.	4.5	23
68	Foamy virus–adenovirus hybrid vectors. Gene Therapy, 2004, 11, 722-728.	4.5	23
69	N-Terminal Gag Domain Required for Foamy Virus Particle Assembly and Export. Journal of Virology, 2005, 79, 12464-12476.	3.4	23
70	Completion of Hepatitis C Virus Replication Cycle in Heterokaryons Excludes Dominant Restrictions in Human Non-liver and Mouse Liver Cell Lines. PLoS Pathogens, 2011, 7, e1002029.	4.7	23
71	Foamy virus for efficient gene transfer in regeneration studies. BMC Developmental Biology, 2013, 13, 17.	2.1	23
72	Cryo-electron Microscopy Structure of the Native Prototype Foamy Virus Glycoprotein and Virus Architecture. PLoS Pathogens, 2016, 12, e1005721.	4.7	23

#	Article	IF	CITATIONS
73	Interferon but not MxB inhibits foamy retroviruses. Virology, 2016, 488, 51-60.	2.4	23
74	Efficient Transient Genetic Manipulation In Vitro and In Vivo by Prototype Foamy Virus-mediated Nonviral RNA Transfer. Molecular Therapy, 2014, 22, 1460-1471.	8.2	22
75	Characterization of the Prototype Foamy Virus Envelope Glycoprotein Receptor-Binding Domain. Journal of Virology, 2006, 80, 8158-8167.	3.4	21
76	Differential pH-dependent cellular uptake pathways among foamy viruses elucidated using dual-colored fluorescent particles. Retrovirology, 2012, 9, 71.	2.0	21
77	Cellular Entry of Retroviruses. Advances in Experimental Medicine and Biology, 2013, 790, 128-149.	1.6	21
78	Tracking Image Correlation: Combining Single-Particle Tracking and Image Correlation. Biophysical Journal, 2013, 104, 2373-2382.	0.5	21
79	Potent neutralizing antibodies in humans infected with zoonotic simian foamy viruses target conserved epitopes located in the dimorphic domain of the surface envelope protein. PLoS Pathogens, 2018, 14, e1007293.	4.7	21
80	The CD40 TRAF family member interacting motif carries the information to rescue WEHI 231 cells from anti-IgM-induced growth arrest. European Journal of Immunology, 1998, 28, 3812-3823.	2.9	20
81	Determinants of foamy virus envelope glycoprotein mediated resistance to superinfection. Virology, 2003, 314, 243-252.	2.4	20
82	Contrasting contributions of complementarity-determining region 2 and hypervariable region 4 of rat BV8S2+ (VA8.2) TCR to the recognition of myelin basic protein and different types of bacterial superantigens. International Immunology, 2004, 16, 655-663.	4.0	19
83	Early Events in Foamy Virus—Host Interaction and Intracellular Trafficking. Viruses, 2013, 5, 1055-1074.	3.3	19
84	Retrotransposition and Cell-to-Cell Transfer of Foamy Viruses. Journal of Virology, 2003, 77, 11855-11858.	3.4	18
85	Foamy Virus Integration. Journal of Virology, 2004, 78, 2472-2477.	3.4	17
86	Structure of a Spumaretrovirus Gag Central Domain Reveals an Ancient Retroviral Capsid. PLoS Pathogens, 2016, 12, e1005981.	4.7	17
87	Determination of the relative amounts of Gag and Pol proteins in foamy virus particles. Retrovirology, 2005, 2, 44.	2.0	16
88	Individual HLA-A, -B, -C, and -DRB1 Genotypes Are No Major Factors Which Determine COVID-19 Severity. Frontiers in Immunology, 2021, 12, 698193.	4.8	15
89	Genetic manipulation of endothelial cells by viral vectors. Thrombosis and Haemostasis, 2009, 102, 1135-1143.	3.4	14
90	Basic Residues in the Foamy Virus Gag Protein. Journal of Virology, 2011, 85, 3986-3995.	3.4	14

DIRK LINDEMANN

#	Article	IF	CITATIONS
91	Retroviral vectors containing Tet-controlled bidirectional transcription units for simultaneous regulation of two gene activities. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2006, 02, 107-18.	0.1	14
92	TraFo-CRISPR: Enhanced Genome Engineering by Transient Foamy Virus Vector-Mediated Delivery of CRISPR/Cas9 Components. Molecular Therapy - Nucleic Acids, 2019, 18, 708-726.	5.1	12
93	Rapid and Efficient Stable Gene Transfer to Mesenchymal Stromal Cells Using a Modified Foamy Virus Vector. Molecular Therapy, 2016, 24, 1227-1236.	8.2	10
94	Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration. PLoS Pathogens, 2016, 12, e1005860.	4.7	9
95	Overexpression of Human HMW FGF-2 but Not LMW FGF-2 Reduces the Cytotoxic Effect of Lentiviral Gene Transfer in Human Corneal Endothelial Cells. , 2012, 53, 3207.		8
96	Characterization and manipulation of foamy virus membrane interactions. Cellular Microbiology, 2013, 15, 227-236.	2.1	8
97	Foamy Virus Protein—Nucleic Acid Interactions during Particle Morphogenesis. Viruses, 2016, 8, 243.	3.3	8
98	Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Acute Myeloid Leukemia. Blood, 2011, 118, 2618-2618.	1.4	8
99	Foamy Virus Vectors Transduce Visceral Organs and Hippocampal Structures following InÂVivo Delivery to Neonatal Mice. Molecular Therapy - Nucleic Acids, 2018, 12, 626-634.	5.1	7
100	The Unique, the Known, and the Unknown of Spumaretrovirus Assembly. Viruses, 2021, 13, 105.	3.3	7
101	Low-Level Expression of Functional Foamy Virus Receptor on Hematopoietic Progenitor Cells. Virology, 2001, 288, 139-144.	2.4	6
102	Replication-Competent Hybrids between Murine Leukemia Virus and Foamy Virus. Journal of Virology, 2003, 77, 7677-7681.	3.4	6
103	An N-terminal domain helical motif of Prototype Foamy Virus Gag with dual functions essential for particle egress and viral infectivity. Retrovirology, 2013, 10, 45.	2.0	6
104	Pseudotyping and Culture Conditions Affect Efficiency and Cytotoxicity of Retroviral Gene Transfer to Human Corneal Endothelial Cells. , 2011, 52, 6807.		5
105	Purification of foamy viral particles. Virology, 2017, 506, 28-33.	2.4	5
106	Identification of an Intermediate Step in Foamy Virus Fusion. Viruses, 2020, 12, 1472.	3.3	5
107	Insights into Innate Sensing of Prototype Foamy Viruses in Myeloid Cells. Viruses, 2019, 11, 1095.	3.3	4
108	HIV-2 Vif and foamy virus Bet antagonize APOBEC3B by different mechanisms. Virology, 2021, 554, 17-27.	2.4	3

DIRK LINDEMANN

#	Article	IF	CITATIONS
109	An Evolutionarily Conserved Positively Charged Amino Acid in the Putative Membrane-Spanning Domain of the Foamy Virus Envelope Protein Controls Fusion Activity. Journal of Virology, 2000, 74, 4474-4482.	3.4	3
110	The CD40 TRAF family member interacting motif carries the information to rescue WEHI 231 cells from anti-IgM-induced growth arrest. European Journal of Immunology, 1998, 28, 3812-3823.	2.9	2
111	A Modified Foamy Viral Envelope Enhances Gene Transfer Efficiency and Reduces Toxicity of Lentiviral FANCA Vectors in Fanca-/- HSCs Blood, 2009, 114, 696-696.	1.4	2
112	Reversal of Blimp-1-mediated apoptosis by A1, a member of the Bcl-2 family. European Journal of Immunology, 1999, 29, 2988-2998.	2.9	1
113	TRPV4 Stimulation Level Regulates Ca2+-Dependent Control of Human Corneal Endothelial Cell Viability and Survival. Membranes, 2022, 12, 281.	3.0	1
114	ERRATUM FOR: June 2012. , 2012, 53, 4330.		0
115	Tracking Image Cross-Correlation for Elucidating the Fusion Process of Viruses. Biophysical Journal, 2012, 102, 618a.	0.5	0
116	Characterisation of a spumavirus Gag protein. Retrovirology, 2013, 10, P3.	2.0	0
117	Efficient Transduction of Common Marmoset (Callithrix jacchus) Hematopoietic and Embryonic Stem Cells Using Foamyvirus Vectors Blood, 2005, 106, 5530-5530.	1.4	0
118	Overexpression of cdk4 and cyclinD1 triggers greater expansion of neural stem cells in the adult mouse brain. Journal of Cell Biology, 2011, 193, i5-i5.	5.2	0
119	Transduction of Hematopoietic Stem/Progenitor Cells with a Lentivirus Expressing FANCA off the Human Phosphoglycerate Kinase Promoter Corrects the Fanconi Anemia Phenotype,. Blood, 2011, 118, 4178-4178.	1.4	0
120	CCND1–CDK4–mediated cell cycle progression provides a competitive advantage for human	5.2	0

hematopoietic stem cells in vivo. Journal of Cell Biology, 2015, 210, 2102OIA144. 120