
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2547298/publications.pdf Version: 2024-02-01

SHENCU WEI

#	Article	IF	CITATIONS
1	The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries. Science, 2011, 332, 1421-1425.	12.6	648
2	Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience, 2015, 8, 708-711.	12.9	405
3	Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico. Nature Geoscience, 2011, 4, 615-618.	12.9	225
4	The 2012 Brawley swarm triggered by injection-induced aseismic slip. Earth and Planetary Science Letters, 2015, 422, 115-125.	4.4	141
5	The 2013, Mw 7.7 Balochistan earthquake, energetic strike-slip reactivation of a thrust fault. Earth and Planetary Science Letters, 2014, 391, 128-134.	4.4	138
6	Sources of shaking and flooding during the Tohoku-Oki earthquake: A mixture of rupture styles. Earth and Planetary Science Letters, 2012, 333-334, 91-100.	4.4	121
7	The 2016 KaikÅura earthquake: Simultaneous rupture of the subduction interface and overlying faults. Earth and Planetary Science Letters, 2018, 482, 44-51.	4.4	107
8	Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation. Nature Geoscience, 2019, 12, 935-939.	12.9	106
9	Modeling the 2012 Wharton basin earthquakes offâ€Sumatra: Complete lithospheric failure. Journal of Geophysical Research: Solid Earth, 2013, 118, 3592-3609.	3.4	98
10	Rupture complexity of the 1994 Bolivia and 2013 Sea of Okhotsk deep earthquakes. Earth and Planetary Science Letters, 2014, 385, 89-96.	4.4	96
11	The 2014 Mw 6.1 South Napa Earthquake: A Unilateral Rupture with Shallow Asperity and Rapid Afterslip. Seismological Research Letters, 2015, 86, 344-354.	1.9	78
12	lmaging the distribution of transient viscosity after the 2016 <i>M</i> _w 7.1 Kumamoto earthquake. Science, 2017, 356, 163-167.	12.6	72
13	Source mechanism of strong aftershocks (M s⩾5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics. Science in China Series D: Earth Sciences, 2009, 52, 739-753.	0.9	65
14	The rise, collapse, and compaction of Mt. Mantap from the 3 September 2017 North Korean nuclear test. Science, 2018, 361, 166-170.	12.6	62
15	Seismic Sensor Misorientation Measurement Using <i>P</i> â€Wave Particle Motion: An Application to the NECsaids Array. Seismological Research Letters, 2016, 87, 901-911.	1.9	59
16	Initiation of the great Mw 9.0 Tohoku–Oki earthquake. Earth and Planetary Science Letters, 2011, 308, 277-283.	4.4	56
17	Double-ramp on the Main Himalayan Thrust revealed by broadband waveform modeling of the 2015 Gorkha earthquake sequence. Earth and Planetary Science Letters, 2017, 473, 83-93.	4.4	55
18	Report on the August 2012 Brawley Earthquake Swarm in Imperial Valley, Southern California. Seismological Research Letters, 2013, 84, 177-189.	1.9	48

#	Article	IF	CITATIONS
19	Rupture complexity of the <i>M_w</i> 8.3 sea of okhotsk earthquake: Rapid triggering of complementary earthquakes?. Geophysical Research Letters, 2013, 40, 5034-5039.	4.0	40
20	The 2016 MwÂ6.5 Pidie Jaya, Aceh, North Sumatra, Earthquake: Reactivation of an Unidentified Sinistral Fault in a Region of Distributed Deformation. Seismological Research Letters, 2018, 89, 1761-1772.	1.9	38
21	A 3â€D Shear Wave Velocity Model for Myanmar Region. Journal of Geophysical Research: Solid Earth, 2019, 124, 504-526.	3.4	38
22	The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone. Science Advances, 2017, 3, e1601689.	10.3	34
23	Structural control and system-level behavior of the seismic cycle at the Nankai Trough. Earth, Planets and Space, 2020, 72, .	2.5	33
24	Distinct slab interfaces imaged within the mantle transition zone. Nature Geoscience, 2020, 13, 822-827.	12.9	32
25	Preliminary Report on the 29 July 2008 Mw 5.4 Chino Hills, Eastern Los Angeles Basin, California, Earthquake Sequence. Seismological Research Letters, 2008, 79, 855-866.	1.9	31
26	Teleseismic Traveltime Tomography of Northern Sumatra. Geophysical Research Letters, 2018, 45, 13,231.	4.0	31
27	Complementary slip distributions of the largest earthquakes in the 2012 Brawley swarm, Imperial Valley, California. Geophysical Research Letters, 2013, 40, 847-852.	4.0	30
28	The 2015 Gorkha (Nepal) earthquake sequence: I. Source modeling and deterministic 3D ground shaking. Tectonophysics, 2018, 722, 447-461.	2.2	30
29	Coulomb stress transfer and accumulation on the Sagaing Fault, Myanmar, over the past 110Âyears and its implications for seismic hazard. Geophysical Research Letters, 2017, 44, 4781-4789.	4.0	29
30	Coulomb Stress Change Sensitivity due to Variability in Mainshock Source Models and Receiving Fault Parameters: A Case Study of the 2010-201. Christchurch, New Zealand, Earthquakes. Seismological Research Letters, 2011, 82, 800-814.	1.9	27
31	How complex is the 2016 Mw 7.8 Kaikoura earthquake, South Island, New Zealand?. Science Bulletin, 2017, 62, 309-311.	9.0	27
32	CAPjoint, A Computer Software Package for Joint Inversion of Moderate Earthquake Source Parameters with Local and Teleseismic Waveforms. Seismological Research Letters, 2015, 86, 432-441.	1.9	25
33	The 2015 M w 6.0 Mt. Kinabalu earthquake: an infrequent fault rupture within the Crocker fault system of East Malaysia. Geoscience Letters, 2017, 4, .	3.3	23
34	An MCMC multiple point sources inversion scheme and its application to the 2016 Kumamoto Mw 6.2 earthquake. Geophysical Journal International, 2018, 215, 737-752.	2.4	23
35	Active backstop faults in the Mentawai region of Sumatra, Indonesia, revealed by teleseismic broadband waveform modeling. Earth and Planetary Science Letters, 2018, 483, 29-38.	4.4	21
36	Hypocenter and Magnitude Analysis of Aftershocks of the 2018 Lombok, Indonesia, Earthquakes Using Local Seismographic Networks. Seismological Research Letters, 2020, 91, 2152-2162.	1.9	21

#	Article	IF	CITATIONS
37	Tsunami earthquakes: Vertical pop-up expulsion at the forefront of subduction megathrust. Earth and Planetary Science Letters, 2020, 538, 116197.	4.4	21
38	Earthquake Centroid Locations Using Calibration from Ambient Seismic Noise. Bulletin of the Seismological Society of America, 2011, 101, 1438-1445.	2.3	20
39	The co-seismic Coulomb stress change and expected seismicity rate caused by 14 April 2010 Ms=7.1 Yushu, China, earthquake. Tectonophysics, 2011, 510, 345-353.	2.2	20
40	An SEM-DSM three-dimensional hybrid method for modelling teleseismic waves with complicated source-side structures. Geophysical Journal International, 2018, 215, 133-154.	2.4	20
41	An Extremely Shallow <i>M</i> _{<i>w</i>} 4.1 Thrust Earthquake in the Eastern Sichuan Basin (China) Likely Triggered by Unloading During Infrastructure Construction. Geophysical Research Letters, 2019, 46, 13775-13784.	4.0	19
42	Slip Complementarity and Triggering between the Foreshock, Mainshock, and Afterslip of the 2019 Ridgecrest Rupture Sequence. Bulletin of the Seismological Society of America, 2020, 110, 1701-1715.	2.3	19
43	Slab Models Beneath Central Myanmar Revealed by a Joint Inversion of Regional and Teleseismic Traveltime Data. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020164.	3.4	19
44	Triple junction kinematics accounts for the 2016 M _w 7.8 Kaikoura earthquake rupture complexity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26367-26375.	7.1	17
45	Source Mechanism and Rupture Directivity of the 18 May 2009 MW 4.6 Inglewood, California, Earthquake. Bulletin of the Seismological Society of America, 2010, 100, 3269-3277.	2.3	16
46	Source characteristics of the 2017 Mw6.4 Moijabana, Botswana earthquake, a rare lower-crustal event within an ancient zone of weakness. Earth and Planetary Science Letters, 2019, 506, 348-359.	4.4	16
47	Cascading Partial Rupture of the Flores Thrust during the 2018 Lombok Earthquake Sequence, Indonesia. Seismological Research Letters, 2020, 91, 2141-2151.	1.9	15
48	Large‣cale Crustal Structure Beneath Singapore Using Receiver Functions From a Dense Urban Nodal Array. Geophysical Research Letters, 2020, 47, e2020GL087233.	4.0	15
49	Thermal squeezing of the seismogenic zone controlled rupture of the volcano-rooted Flores Thrust. Science Advances, 2021, 7, .	10.3	15
50	Coseismic displacements from SAR image offsets between different satellite sensors: Application to the 2001 Bhuj (India) earthquake. Geophysical Research Letters, 2015, 42, 7022-7030.	4.0	14
51	New insights into the structural heterogeneity and geodynamics of the Indo-Burma subduction zone from ambient noise tomography. Earth and Planetary Science Letters, 2021, 562, 116856.	4.4	14
52	A comprehensive assessment of ground motions from two 2016 intra-slab earthquakes in Myanmar. Tectonophysics, 2019, 765, 146-160.	2.2	13
53	Stress Changes on the Garlock Fault during and after the 2019 Ridgecrest Earthquake Sequence. Bulletin of the Seismological Society of America, 2020, 110, 1752-1764.	2.3	13
54	ls the Aftershock Zone Area a Good Proxy for the Mainshock Rupture Area?. Bulletin of the Seismological Society of America, 2021, 111, 424-438.	2.3	13

#	Article	IF	CITATIONS
55	Surface Wave Path Corrections and Source Inversions in Southern California. Bulletin of the Seismological Society of America, 2010, 100, 2891-2904.	2.3	12
56	The effects of core-reflected waves on finite fault inversions with teleseismic body wave data. Geophysical Journal International, 2017, 211, 936-951.	2.4	12
57	Local earthquake tomography of the source region of the 2018 Lombok earthquake sequence, Indonesia. Geophysical Journal International, 2021, 226, 1814-1823.	2.4	12
58	Locating earthquakes with surface waves and centroid moment tensor estimation. Journal of Geophysical Research, 2012, 117, .	3.3	11
59	Teleseismic Waveform Complexities Caused by Near Trench Structures and Their Impacts on Earthquake Source Study: Application to the 2015 Illapel Aftershocks (Central Chile). Journal of Geophysical Research: Solid Earth, 2019, 124, 870-889.	3.4	11
60	The 1922 Peninsula Malaysia Earthquakes: Rare Intraplate Seismicity within the Sundaland Block in Southeast Asia. Seismological Research Letters, 2020, 91, 2531-2545.	1.9	10
61	The 2015 Gorkha, Nepal, Earthquake Sequence: II. Broadband Simulation of Ground Motion in Kathmandu. Bulletin of the Seismological Society of America, 2019, 109, 672-687.	2.3	9
62	Structural Controls on Rupture Extent of Recent Sumatran Fault Zone Earthquakes, Indonesia. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018101.	3.4	9
63	Deriving Centimeter-Level Coseismic Deformation and Fault Geometries of Small-To-Moderate Earthquakes From Time-Series Sentinel-1 SAR Images. Frontiers in Earth Science, 2021, 9, .	1.8	9
64	Combining Petrology and Seismology to Unravel the Plumbing System of a Typical Arc Volcano: An Example From Marapi, West Sumatra, Indonesia. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009524.	2.5	9
65	A study on the uncertainties of the centroid depth of the 2013 Lushan earthquake from teleseimic body wave data. Earthquake Science, 2013, 26, 161-168.	0.9	8
66	Seismic event detection in urban Singapore using a nodal array and frequency domain array detector: earthquakes, blasts and thunderquakes. Geophysical Journal International, 2021, 226, 1542-1557.	2.4	8
67	Space Imaging Geodesy Reveals Near Circular, Coseismic Block Rotation During the 2016 M _w 7.8 KaikÅura Earthquake, New Zealand. Geophysical Research Letters, 2020, 47, e2020GL090206.	4.0	7
68	Necking and fracking may explain stationary seismicity and full degassing in volcanic silicic spine extrusion. Earth and Planetary Science Letters, 2018, 503, 47-57.	4.4	6
69	Highly Heterogeneous Pore Fluid Pressure Enabled Rupture of Orthogonal Faults During the 2019 Ridgecrest Mw7.0 Earthquake. Geophysical Research Letters, 2020, 47, e2020GL089827.	4.0	6
70	A Travelâ€Time Path Calibration Strategy for Backâ€Projection of Large Earthquakes and Its Application and Validation Through the Segmented Superâ€Shear Rupture Imaging of the 2002 Mw 7.9 Denali Earthquake. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	6
71	Rapid Assessment of Earthquake Source Characteristics. Bulletin of the Seismological Society of America, 2016, 106, 2490-2499.	2.3	5
72	Static Source Properties of Slow and Fast Earthquakes. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019028.	3.4	5

#	Article	IF	CITATIONS
73	The January 11, 2018, M _w 6.0 Bagoâ€Yoma, Myanmar Earthquake: A Shallow Thrust Event Within the Deforming Bagoâ€Yoma Range. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021313.	3.4	4
74	Towards big SAR data era: An efficient Sentinel-1 Near-Real-Time InSAR processing workflow with an emphasis on co-registration and phase unwrapping. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188, 286-300.	11.1	4
75	Source model of the 11th July 2004 Zhongba earthquake revealed from the joint inversion of InSAR and seismological data. Earthquake Science, 2011, 24, 207-220.	0.9	3
76	Interrogation of the Megathrust Zone in the Tohoku-Oki Seismic Region by Waveform Complexity: Intraslab Earthquake Rupture and Reactivation of Subducted Normal Faults. Pure and Applied Geophysics, 2015, 172, 3425-3437.	1.9	3
77	Evidence for strong lateral seismic velocity variation in the lower crust and upper mantle beneath the California margin. Earth and Planetary Science Letters, 2017, 463, 202-211.	4.4	3
78	Focal mechanism of the August 18th 2012 Mw6.3 Palu-Koro earthquake and its implication of seismic hazard. AIP Conference Proceedings, 2017, , .	0.4	3
79	An iterative algorithm for separation of <i>S</i> and <i>ScS</i> waves of great earthquakes. Geophysical Journal International, 2012, 191, 591-600.	2.4	2
80	Lithospheric radial anisotropy beneath the Gulf of Mexico. Earth and Planetary Science Letters, 2017, 466, 43-52.	4.4	2
81	Seismic Attenuation Tomography From 2018 Lombok Earthquakes, Indonesia. Frontiers in Earth Science, 2021, 9, .	1.8	2
82	Tsunami earthquakes: Vertical pop-up expulsion at the forefront of subduction megathrust: Reply to Commentary. Earth and Planetary Science Letters, 2021, 557, 116744.	4.4	1
83	Frequencyâ€Dependent Rupture Characteristics of the 30 October 2016 Mw 6.5 Norcia, Italy Earthquake Inferred From Joint Multiâ€Scale Slip Inversion. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020706.	3.4	1
84	Determination of Shear Wave Splitting Parameters in 2018 Lombok Earthquake Using Rotation Correlation Method: Preliminary Result. IOP Conference Series: Earth and Environmental Science, 2021, 873, 012101.	0.3	1
85	Effects of sedimentary layer on earthquake source modeling from geodetic inversion. Earthquake Science, 2011, 24, 221-227.	0.9	О