List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2546473/publications.pdf Version: 2024-02-01

		2802	5120
314	30,970	94	166
papers	citations	h-index	g-index
314	314	314	15503
all docs	docs citations	times ranked	citing authors

FENCLU

#	Article	IF	CITATIONS
1	Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 2015, 9, 174-179.	31.4	1,595
2	A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency. Journal of the American Chemical Society, 2015, 137, 3886-3893.	13.7	788
3	Small-molecule solar cells with efficiency over 9%. Nature Photonics, 2015, 9, 35-41.	31.4	769
4	High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nature Energy, 2018, 3, 952-959.	39.5	558
5	Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nature Photonics, 2017, 11, 85-90.	31.4	510
6	Small-Molecule Acceptor Based on the Heptacyclic Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 4929-4934.	13.7	459
7	Deep Absorbing Porphyrin Small Molecule for High-Performance Organic Solar Cells with Very Low Energy Losses. Journal of the American Chemical Society, 2015, 137, 7282-7285.	13.7	436
8	Fluoroâ€Substituted nâ€Type Conjugated Polymers for Additiveâ€Free Allâ€Polymer Bulk Heterojunction Solar Cells with High Power Conversion Efficiency of 6.71%. Advanced Materials, 2015, 27, 3310-3317.	21.0	421
9	Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. Journal of the American Chemical Society, 2015, 137, 13130-13137.	13.7	394
10	High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells. Journal of the American Chemical Society, 2017, 139, 17114-17119.	13.7	384
11	An Unfusedâ€Coreâ€Based Nonfullerene Acceptor Enables Highâ€Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures. Advanced Materials, 2018, 30, 1705208.	21.0	380
12	Dithienopicenocarbazole-Based Acceptors for Efficient Organic Solar Cells with Optoelectronic Response Over 1000 nm and an Extremely Low Energy Loss. Journal of the American Chemical Society, 2018, 140, 2054-2057.	13.7	369
13	26†mA†cmâ v2 Jsc from organic solar cells with a low-bandgap nonfullerene acceptor. Science Bulletin, 2017, 62, 1494-1496.	9.0	368
14	A Highly Efficient Nonâ€Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fineâ€Tuned Holeâ€Transporting Layer. Advanced Materials, 2018, 30, e1801801.	21.0	360
15	Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency. Science China Chemistry, 2018, 61, 531-537.	8.2	342
16	Allâ€Polymer Solar Cells Based on a Conjugated Polymer Containing Siloxaneâ€Functionalized Side Chains with Efficiency over 10%. Advanced Materials, 2017, 29, 1703906.	21.0	332
17	Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Twoâ€inâ€One Strategy. Advanced Materials, 2021, 33, e2100830.	21.0	323
18	Subtle Molecular Tailoring Induces Significant Morphology Optimization Enabling over 16% Efficiency Organic Solar Cells with Efficient Charge Generation. Advanced Materials, 2020, 32, e1906324.	21.0	312

#	Article	IF	CITATIONS
19	Efficient Polymer Solar Cells Based on Benzothiadiazole and Alkylphenyl Substituted Benzodithiophene with a Power Conversion Efficiency over 8%. Advanced Materials, 2013, 25, 4944-4949.	21.0	306
20	Improving the Ordering and Photovoltaic Properties by Extending <i>π</i> –Conjugated Area of Electronâ€Đonating Units in Polymers with Dâ€A Structure. Advanced Materials, 2012, 24, 3383-3389.	21.0	298
21	On the morphology of polymerâ€based photovoltaics. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1018-1044.	2.1	297
22	A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy and Environmental Science, 2019, 12, 157-163.	30.8	287
23	A Thieno[3,4- <i>b</i>]thiophene-Based Non-fullerene Electron Acceptor for High-Performance Bulk-Heterojunction Organic Solar Cells. Journal of the American Chemical Society, 2016, 138, 15523-15526.	13.7	286
24	Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nature Energy, 2018, 3, 1051-1058.	39.5	281
25	Bulk Heterojunction Photovoltaic Active Layers via Bilayer Interdiffusion. Nano Letters, 2011, 11, 2071-2078.	9.1	274
26	Over 12% Efficiency Nonfullerene All‣mallâ€Molecule Organic Solar Cells with Sequentially Evolved Multilength Scale Morphologies. Advanced Materials, 2019, 31, e1807842.	21.0	272
27	Optimized Fibril Network Morphology by Precise Sideâ€Chain Engineering to Achieve Highâ€Performance Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2018, 30, e1707353.	21.0	271
28	The Crystallization of PEDOT:PSS Polymeric Electrodes Probed In Situ during Printing. Advanced Materials, 2015, 27, 3391-3397.	21.0	263
29	Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10%. Advanced Materials, 2016, 28, 10008-10015.	21.0	254
30	Fineâ€Tuning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%. Advanced Materials, 2018, 30, 1706124.	21.0	253
31	Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. Progress in Polymer Science, 2013, 38, 1990-2052.	24.7	252
32	Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Smallâ€Bandgap Electron Acceptor. Advanced Materials, 2017, 29, 1606574.	21.0	252
33	Asymmetrical Ladderâ€Type Donorâ€Induced Polar Small Molecule Acceptor to Promote Fill Factors Approaching 77% for Highâ€Performance Nonfullerene Polymer Solar Cells. Advanced Materials, 2018, 30, e1800052.	21.0	252
34	Multiâ€Lengthâ€Scale Morphologies Driven by Mixed Additives in Porphyrinâ€Based Organic Photovoltaics. Advanced Materials, 2016, 28, 4727-4733.	21.0	251
35	Highâ€Efficiency Nonfullerene Polymer Solar Cells with Medium Bandgap Polymer Donor and Narrow Bandgap Organic Semiconductor Acceptor. Advanced Materials, 2016, 28, 8288-8295.	21.0	247
36	Aligned and Graded Typeâ€I Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. Advanced Energy Materials, 2018, 8, 1800185.	19.5	247

#	Article	IF	CITATIONS
37	11% Efficient Ternary Organic Solar Cells with High Composition Tolerance via Integrated Nearâ€IR Sensitization and Interface Engineering. Advanced Materials, 2016, 28, 8184-8190.	21.0	246
38	Morphology Control Enables Efficient Ternary Organic Solar Cells. Advanced Materials, 2018, 30, e1803045.	21.0	243
39	Optimized active layer morphology toward efficient and polymer batch insensitive organic solar cells. Nature Communications, 2020, 11, 2855.	12.8	237
40	Highâ€Performance Asâ€Cast Nonfullerene Polymer Solar Cells with Thicker Active Layer and Large Area Exceeding 11% Power Conversion Efficiency. Advanced Materials, 2018, 30, 1704546.	21.0	233
41	Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nature Communications, 2019, 10, 519.	12.8	231
42	A Novel Naphtho[1,2â€ <i>c</i> :5,6â€ <i>c′</i>]Bis([1,2,5]Thiadiazole)â€Based Narrowâ€Bandgap π onjug Polymer with Power Conversion Efficiency Over 10%. Advanced Materials, 2016, 28, 9811-9818.	zated 21.0	230
43	Random terpolymer based on thiophene-thiazolothiazole unit enabling efficient non-fullerene organic solar cells. Nature Communications, 2020, 11, 4612.	12.8	225
44	Two-Dimensional Perovskite Solar Cells with 14.1% Power Conversion Efficiency and 0.68% External Radiative Efficiency. ACS Energy Letters, 2018, 3, 2086-2093.	17.4	224
45	Morphology Optimization via Side Chain Engineering Enables All-Polymer Solar Cells with Excellent Fill Factor and Stability. Journal of the American Chemical Society, 2018, 140, 8934-8943.	13.7	218
46	Chargeâ€Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 2016, 28, 10718-10724.	21.0	214
47	Fineâ€Tuning the Energy Levels of a Nonfullerene Smallâ€Molecule Acceptor to Achieve a High Shortâ€Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells. Advanced Materials, 2018, 30, 1704904.	21.0	214
48	Polymer semiconductor crystals. Materials Today, 2010, 13, 14-24.	14.2	210
49	Efficient Polymer Solar Cells Based on a Low Bandgap Semiâ€crystalline DPP Polymerâ€PCBM Blends. Advanced Materials, 2012, 24, 3947-3951.	21.0	209
50	Series of Multifluorine Substituted Oligomers for Organic Solar Cells with Efficiency over 9% and Fill Factor of 0.77 by Combination Thermal and Solvent Vapor Annealing. Journal of the American Chemical Society, 2016, 138, 7687-7697.	13.7	209
51	Organic Single-Crystalline pâ^'n Junction Nanoribbons. Journal of the American Chemical Society, 2010, 132, 11580-11584.	13.7	208
52	Understanding the Morphology of PTB7:PCBM Blends in Organic Photovoltaics. Advanced Energy Materials, 2014, 4, 1301377.	19.5	203
53	A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency. Solar Rrl, 2017, 1, 1700044.	5.8	198
54	A Twisted Thieno[3,4â€ <i>b</i>]thiopheneâ€Based Electron Acceptor Featuring a 14â€ï€â€Electron Indenoinder Core for Highâ€Performance Organic Photovoltaics. Advanced Materials, 2017, 29, 1704510.	^{او} 21.0	196

#	Article	IF	CITATIONS
55	Highly Efficient Organic Solar Cells Based on S,N-Heteroacene Non-Fullerene Acceptors. Chemistry of Materials, 2018, 30, 5429-5434.	6.7	194
56	In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4â^' cage nanoparticles. Nature Communications, 2017, 8, 15688.	12.8	191
57	Design of a Highly Crystalline Low-Band Gap Fused-Ring Electron Acceptor for High-Efficiency Solar Cells with Low Energy Loss. Chemistry of Materials, 2017, 29, 8369-8376.	6.7	180
58	Highâ€Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%. Advanced Functional Materials, 2016, 26, 3508-3514.	14.9	176
59	A high mobility conjugated polymer based on dithienothiophene and diketopyrrolopyrrole for organic photovoltaics. Energy and Environmental Science, 2012, 5, 6857.	30.8	171
60	Achieving Highâ€Performance Ternary Organic Solar Cells through Tuning Acceptor Alloy. Advanced Materials, 2017, 29, 1603154.	21.0	171
61	Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation. Energy and Environmental Science, 2020, 13, 5017-5027.	30.8	170
62	Semi-crystalline random conjugated copolymers with panchromatic absorption for highly efficient polymer solar cells. Energy and Environmental Science, 2013, 6, 3301.	30.8	165
63	Subtle Balance Between Length Scale of Phase Separation and Domain Purification in Smallâ€Molecule Bulkâ€Heterojunction Blends under Solvent Vapor Treatment. Advanced Materials, 2015, 27, 6296-6302.	21.0	159
64	Unexpected One-Pot Method to Synthesize Spiro[fluorene-9,9â€~-xanthene] Building Blocks for Blue-Light-Emitting Materials. Organic Letters, 2006, 8, 2787-2790.	4.6	153
65	Progress and prospects of the morphology of non-fullerene acceptor based high-efficiency organic solar cells. Energy and Environmental Science, 0, , .	30.8	149
66	Fluorene-substituted pyrenes—Novel pyrene derivatives as emitters in nondoped blue OLEDs. Organic Electronics, 2006, 7, 155-162.	2.6	148
67	Ternary non-fullerene polymer solar cells with 13.51% efficiency and a record-high fill factor of 78.13%. Energy and Environmental Science, 2018, 11, 3392-3399.	30.8	143
68	Approaching 16% Efficiency in All-Small-Molecule Organic Solar Cells Based on Ternary Strategy with a Highly Crystalline Acceptor. Joule, 2020, 4, 2223-2236.	24.0	142
69	Spiro Linkage as an Alternative Strategy for Promising Nonfullerene Acceptors in Organic Solar Cells. Advanced Functional Materials, 2015, 25, 5954-5966.	14.9	140
70	An A-D-A Type Small-Molecule Electron Acceptor with End-Extended Conjugation for High Performance Organic Solar Cells. Chemistry of Materials, 2017, 29, 7908-7917.	6.7	139
71	Molecular Engineering of Copper Phthalocyanines: A Strategy in Developing Dopantâ€Free Holeâ€Transporting Materials for Efficient and Ambientâ€&table Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803287.	19.5	138
72	Effect of Fluorine Content in Thienothiophene-Benzodithiophene Copolymers on the Morphology and Performance of Polymer Solar Cells. Chemistry of Materials, 2014, 26, 3009-3017.	6.7	136

#	Article	IF	CITATIONS
73	Mesoporous PbI ₂ Scaffold for Highâ€Performance Planar Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501890.	19.5	124
74	InÂsitu supramolecular polymerization-enhanced self-assembly of polymer vesicles for highly efficient photothermal therapy. Nature Communications, 2020, 11, 1724.	12.8	122
75	Relating Chemical Structure to Device Performance via Morphology Control in Diketopyrrolopyrrole-Based Low Band Gap Polymers. Journal of the American Chemical Society, 2013, 135, 19248-19259.	13.7	121
76	Conformation Locking on Fusedâ€Ring Electron Acceptor for Highâ€Performance Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1705095.	14.9	120
77	Fast Printing and In Situ Morphology Observation of Organic Photovoltaics Using Slotâ€Đie Coating. Advanced Materials, 2015, 27, 886-891.	21.0	117
78	Efficient Organic Solar Cells with Extremely High Openâ€Circuit Voltages and Low Voltage Losses by Suppressing Nonradiative Recombination Losses. Advanced Energy Materials, 2018, 8, 1801699.	19.5	117
79	Low band gap conjugated polymers combining siloxane-terminated side chains and alkyl side chains: side-chain engineering achieving a large active layer processing window for PCE > 10% in polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 17619-17631.	10.3	116
80	An Electron Acceptor with Broad Visible–NIR Absorption and Unique Solid State Packing for As ast High Performance Binary Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802324.	14.9	116
81	Enhancing the Performance of Organic Solar Cells by Hierarchically Supramolecular Self-Assembly of Fused-Ring Electron Acceptors. Chemistry of Materials, 2018, 30, 4307-4312.	6.7	116
82	A Rational Molecular Design of β-Phase Polydiarylfluorenes: Synthesis, Morphology, and Organic Lasers. Macromolecules, 2014, 47, 1001-1007.	4.8	115
83	Regioregular Bis-Pyridal[2,1,3]thiadiazole-Based Semiconducting Polymer for High-Performance Ambipolar Transistors. Journal of the American Chemical Society, 2017, 139, 17735-17738.	13.7	115
84	Nonfullerene Polymer Solar Cells Based on a Main-Chain Twisted Low-Bandgap Acceptor with Power Conversion Efficiency of 13.2%. ACS Energy Letters, 2018, 3, 1499-1507.	17.4	113
85	Fibril Network Strategy Enables Highâ€Performance Semitransparent Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2002181.	14.9	113
86	A simple perylene diimide derivative with a highly twisted geometry as an electron acceptor for efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 10659-10665.	10.3	110
87	Comparison of Two Dâ^'A Type Polymers with Each BeingÂFluorinated on D and A Unit for High Performance Solar Cells. Advanced Functional Materials, 2015, 25, 120-125.	14.9	108
88	Approaching Intra―and Interchain Charge Transport of Conjugated Polymers Facilely by Topochemical Polymerized Single Crystals. Advanced Materials, 2017, 29, 1701251.	21.0	107
89	Molecular Weight Dependence of the Morphology in P3HT:PCBM Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 19876-19887.	8.0	106
90	A simple small molecule as an acceptor for fullerene-free organic solar cells with efficiency near 8%. Journal of Materials Chemistry A, 2016, 4, 10409-10413.	10.3	104

#	Article	IF	CITATIONS
91	Toward Practical Useful Polymers for Highly Efficient Solar Cells via a Random Copolymer Approach. Journal of the American Chemical Society, 2016, 138, 10782-10785.	13.7	101
92	Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%. Advanced Energy Materials, 2018, 8, 1701942.	19.5	99
93	A novel wide-bandgap small molecule donor for high efficiency all-small-molecule organic solar cells with small non-radiative energy losses. Energy and Environmental Science, 2020, 13, 1309-1317.	30.8	99
94	Morphology Characterization of Bulk Heterojunction Solar Cells. Small Methods, 2018, 2, 1700229.	8.6	98
95	Efficient 9-alkylphenyl-9-pyrenylfluorene substituted pyrene derivatives with improved hole injection for blue light-emitting diodes. Journal of Materials Chemistry, 2006, 16, 4074.	6.7	95
96	Synthesis, Electronic Structure, Molecular Packing/Morphology Evolution, and Carrier Mobilities of Pure Oligo-/Poly(alkylthiophenes). Journal of the American Chemical Society, 2013, 135, 844-854.	13.7	95
97	Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV. Materials Chemistry Frontiers, 2018, 2, 121-128.	5.9	95
98	NDIâ€Based Small Molecule as Promising Nonfullerene Acceptor for Solutionâ€Processed Organic Photovoltaics. Advanced Energy Materials, 2015, 5, 1500195.	19.5	94
99	Tuning V _{oc} for high performance organic ternary solar cells with non-fullerene acceptor alloys. Journal of Materials Chemistry A, 2017, 5, 19697-19702.	10.3	94
100	Headâ€ŧoâ€Head Linkage Containing Bithiopheneâ€Based Polymeric Semiconductors for Highly Efficient Polymer Solar Cells. Advanced Materials, 2016, 28, 9969-9977.	21.0	93
101	Terthieno[3,2â€ <i>b</i>]Thiophene (6T) Based Low Bandgap Fusedâ€Ring Electron Acceptor for Highly Efficient Solar Cells with a High Shortâ€Circuit Current Density and Low Openâ€Circuit Voltage Loss. Advanced Energy Materials, 2018, 8, 1702831.	19.5	93
102	Facile Synthesis of Spirocyclic Aromatic Hydrocarbon Derivatives Based on <i>o</i> -Halobiaryl Route and Domino Reaction for Deep-Blue Organic Semiconductors. Organic Letters, 2009, 11, 3850-3853.	4.6	92
103	Conjugated Polymeric Zwitterions as Efficient Interlayers in Organic Solar Cells. Advanced Materials, 2013, 25, 6868-6873.	21.0	92
104	Dithienosilole-Based Small-Molecule Organic Solar Cells with an Efficiency over 8%: Investigation of the Relationship between the Molecular Structure and Photovoltaic Performance. Chemistry of Materials, 2015, 27, 6077-6084.	6.7	92
105	Structured Liquids with pHâ€Triggered Reconfigurability. Advanced Materials, 2016, 28, 6612-6618.	21.0	92
106	High Efficiency Ternary Nonfullerene Polymer Solar Cells with Two Polymer Donors and an Organic Semiconductor Acceptor. Advanced Energy Materials, 2017, 7, 1602215.	19.5	92
107	Smallâ€Molecule Solar Cells with Simultaneously Enhanced Shortâ€Circuit Current and Fill Factor to Achieve 11% Efficiency. Advanced Materials, 2017, 29, 1700616.	21.0	87
108	Facile Synthesis of Complicated 9,9-Diarylfluorenes Based on BF3·Et2O-Mediated Friedelâ^'Crafts Reaction. Organic Letters, 2006, 8, 3701-3704.	4.6	86

#	Article	IF	CITATIONS
109	Design of Nearâ€Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for Highâ€Performance Semitransparent Ternary Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	85
110	Recent Progress in Polymer White Lightâ€Emitting Materials and Devices. Macromolecular Chemistry and Physics, 2013, 214, 314-342.	2.2	84
111	Synthesis and Characterization of Pyreneâ€Centered Starburst Oligofluorenes. Macromolecular Rapid Communications, 2008, 29, 659-664.	3.9	83
112	Supramolecular Ï€â^Ï€ Stacking Pyrene-Functioned Fluorenes: Toward Efficient Solution-Processable Small Molecule Blue and White Organic Light Emitting Diodes. Journal of Physical Chemistry C, 2009, 113, 4641-4647.	3.1	83
113	Medium Bandgap Conjugated Polymer for High Performance Polymer Solar Cells Exceeding 9% Power Conversion Efficiency. Advanced Materials, 2015, 27, 7462-7468.	21.0	82
114	Following the Morphology Formation In Situ in Printed Active Layers for Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1501580.	19.5	82
115	Efficient Ternary Organic Solar Cells Enabled by the Integration of Nonfullerene and Fullerene Acceptors with a Broad Composition Tolerance. Advanced Functional Materials, 2019, 29, 1807006.	14.9	81
116	Resonant soft X-ray scattering for polymer materials. European Polymer Journal, 2016, 81, 555-568.	5.4	79
117	Fullerene-free small molecule organic solar cells with a high open circuit voltage of 1.15 V. Chemical Communications, 2016, 52, 465-468.	4.1	79
118	New insight of molecular interaction, crystallization and phase separation in higher performance small molecular solar cells via solvent vapor annealing. Nano Energy, 2016, 30, 639-648.	16.0	77
119	A non-fullerene electron acceptor modified by thiophene-2-carbonitrile for solution-processed organic solar cells. Journal of Materials Chemistry A, 2016, 4, 3777-3783.	10.3	77
120	Highâ€Performance Nonâ€Fullerene Organic Solar Cells Based on a Seleniumâ€Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor. Advanced Science, 2016, 3, 1600117.	11.2	76
121	Tuning the Optoelectronic Properties of 4,4′- <i>N</i> , <i>N</i> ′-Dicarbazole-biphenyl through Heteroatom Linkage: New Host Materials for Phosphorescent Organic Light-Emitting Diodes. Organic Letters, 2010, 12, 3438-3441.	4.6	71
122	Small Molecules Based on Alkyl/Alkylthio-thieno[3,2- <i>b</i>]thiophene-Substituted Benzo[1,2- <i>b</i> :4,5-bâ€2]dithiophene for Solution-Processed Solar Cells with High Performance. Chemistry of Materials, 2015, 27, 8414-8423.	6.7	71
123	Donor–Acceptor Copolymers Based on Thermally Cleavable Indigo, Isoindigo, and DPP Units: Synthesis, Field Effect Transistors, and Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 9038-9051.	8.0	69
124	Highâ€Performance Polymer Solar Cells Based on a Wideâ€Bandgap Polymer Containing Pyrrolo[3,4â€ <i>f</i>]benzotriazoleâ€5,7â€dione with a Power Conversion Efficiency of 8.63%. Advanced Science, 2016, 3, 1600032.	11.2	69
125	A Highly Crystalline and Wide-Bandgap Polydiarylfluorene with β-Phase Conformation toward Stable Electroluminescence and Dual Amplified Spontaneous Emission. ACS Applied Materials & Interfaces, 2016, 8, 21648-21655.	8.0	68
126	Revealing the Critical Role of the HOMO Alignment on Maximizing Current Extraction and Suppressing Energy Loss in Organic Solar Cells. IScience, 2019, 19, 883-893.	4.1	68

#	Article	IF	CITATIONS
127	Synthesis of pyridine-capped diketopyrrolopyrrole and its use as a building block of low band-gap polymers for efficient polymer solar cells. Chemical Communications, 2013, 49, 8495.	4.1	67
128	Circumventing UV Light Induced Nanomorphology Disorder to Achieve Long Lifetime PTB7â€Th:PCBM Based Solar Cells. Advanced Energy Materials, 2017, 7, 1701201.	19.5	67
129	Designing an asymmetrical isomer to promote the LUMO energy level and molecular packing of a non-fullerene acceptor for polymer solar cells with 12.6% efficiency. Chemical Science, 2018, 9, 8142-8149.	7.4	67
130	A low band-gap polymer based on unsubstituted benzo[1,2-b:4,5-b′]dithiophene for high performance organic photovoltaics. Chemical Communications, 2012, 48, 6933.	4.1	66
131	Topological Arrangement of Fluorenyl-Substituted Carbazole Triads and Starbursts: Synthesis and Optoelectronic Properties. Journal of Physical Chemistry C, 2011, 115, 6961-6967.	3.1	65
132	Nonhalogen Solventâ€Processed Asymmetric Wideâ€Bandgap Polymers for Nonfullerene Organic Solar Cells with Over 10% Efficiency. Advanced Functional Materials, 2018, 28, 1706517.	14.9	65
133	Nearâ€Infrared Ternary Tandem Solar Cells. Advanced Materials, 2018, 30, e1804416.	21.0	65
134	Donor–Acceptor Conjugated Macrocycles: Synthesis and Host–Guest Coassembly with Fullerene toward Photovoltaic Application. ACS Nano, 2017, 11, 11701-11713.	14.6	64
135	Subtle Side-Chain Engineering of Random Terpolymers for High-Performance Organic Solar Cells. Chemistry of Materials, 2018, 30, 3294-3300.	6.7	64
136	Triisopropylsilylethynyl-functionalized dibenzo[def,mno]chrysene: a solution-processed small molecule for bulk heterojunction solar cells. Journal of Materials Chemistry, 2012, 22, 4266-4268.	6.7	62
137	Manipulating Backbone Structure to Enhance Low Band Gap Polymer Photovoltaic Performance. Advanced Energy Materials, 2013, 3, 930-937.	19.5	62
138	High efficiency organic solar cells based on amorphous electron-donating polymer and modified fullerene acceptor. Nano Energy, 2017, 39, 478-488.	16.0	62
139	New Terthiophene-Conjugated Porphyrin Donors for Highly Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30176-30183.	8.0	61
140	Insertion of double bond π-bridges of A–D–A acceptors for high performance near-infrared polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 22588-22597.	10.3	61
141	Spirocyclic Aromatic Hydrocarbonâ€Based Organic Nanosheets for Ecoâ€Friendly Aqueous Processed Thinâ€Film Nonâ€Volatile Memory Devices. Advanced Materials, 2013, 25, 3664-3669.	21.0	60
142	Guided crystallization of P3HT in ternary blend solar cell based on P3HT:PCPDTBT:PCBM. Energy and Environmental Science, 2014, 7, 3782-3790.	30.8	60
143	Morphology Evolution in Highâ€Performance Polymer Solar Cells Processed from Nonhalogenated Solvent. Advanced Science, 2015, 2, 1500095.	11.2	60
144	The Role of Additive in Diketopyrrolopyrroleâ€Based Small Molecular Bulk Heterojunction Solar Cells. Advanced Materials, 2013, 25, 6519-6525.	21.0	59

#	Article	IF	CITATIONS
145	Chain Length Dependence of the Photovoltaic Properties of Monodisperse Donor–Acceptor Oligomers as Model Compounds of Polydisperse Low Band Gap Polymers. Advanced Functional Materials, 2014, 24, 7538-7547.	14.9	58
146	Anthraceneâ€Based Medium Bandgap Conjugated Polymers for High Performance Polymer Solar Cells Exceeding 8% PCE Without Additive and Annealing Process. Advanced Energy Materials, 2015, 5, 1500065.	19.5	57
147	Multiâ€Length Scaled Silver Nanowire Grid for Application in Efficient Organic Solar Cells. Advanced Functional Materials, 2016, 26, 4822-4828.	14.9	57
148	Nonfullerene Small Molecular Acceptors with a Three-Dimensional (3D) Structure for Organic Solar Cells. Chemistry of Materials, 2016, 28, 6770-6778.	6.7	57
149	Multifaceted Regioregular Oligo(thieno[3,4- <i>b</i>]thiophene)s Enabled by Tunable Quinoidization and Reduced Energy Band Gap. Journal of the American Chemical Society, 2015, 137, 10357-10366.	13.7	52
150	Steric Engineering of Alkylthiolation Side Chains to Finely Tune Miscibility in Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2019, 9, 1802686.	19.5	51
151	Thiophene Rings Improve the Device Performance of Conjugated Polymers in Polymer Solar Cells with Thick Active Layers. Advanced Energy Materials, 2017, 7, 1700519.	19.5	49
152	Panchromatic Ternary Organic Solar Cells with Porphyrin Dimers and Absorption-Complementary Benzodithiophene-based Small Molecules. ACS Applied Materials & Interfaces, 2019, 11, 6283-6291.	8.0	49
153	Efficiency enhancement in solution-processed organic small molecule: Fullerene solar cells via solvent vapor annealing. Applied Physics Letters, 2015, 106, .	3.3	48
154	A solution-processed high performance organic solar cell using a small molecule with the thieno[3,2-b]thiophene central unit. Chemical Communications, 2015, 51, 15268-15271.	4.1	48
155	Developing Quinoidal Fluorophores with Unusually Strong Red/Near-Infrared Emission. Journal of the American Chemical Society, 2015, 137, 11294-11302.	13.7	47
156	Mapping Nonfullerene Acceptors with a Novel Wide Bandgap Polymer for High Performance Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1801214.	19.5	47
157	Systematic Variation of Fluorinated Diketopyrrolopyrrole Low Bandgap Conjugated Polymers: Synthesis by Direct Arylation Polymerization and Characterization and Performance in Organic Photovoltaics and Organic Field-Effect Transistors. Macromolecules, 2015, 48, 6978-6986.	4.8	46
158	Modification on the Indacenodithieno[3,2- <i>b</i>]thiophene Core to Achieve Higher Current and Reduced Energy Loss for Nonfullerene Solar Cells. Chemistry of Materials, 2020, 32, 1297-1307.	6.7	46
159	New Insights into Morphology of High Performance BHJ Photovoltaics Revealed by High Resolution AFM. Nano Letters, 2014, 14, 5727-5732.	9.1	45
160	Sequential Deposition: Optimization of Solvent Swelling for High-Performance Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 653-661.	8.0	45
161	Ternary Solar Cells Based on Two Small Molecule Donors with Same Conjugated Backbone: The Role of Good Miscibility and Hole Relay Process. ACS Applied Materials & Interfaces, 2017, 9, 29917-29923.	8.0	45
162	A visible-near-infrared absorbing A–̀ ₂ –D–π ₁ –D–̀ ₂ –A type dimeric-porphyrin donor for high-performance organic solar cells. Journal of Materials Chemistry A, 2017, 5, 25460-25468.	10.3	45

#	Article	IF	CITATIONS
163	Using <i>o</i> â€Chlorobenzaldehyde as a Fast Removable Solvent Additive during Spinâ€Coating PTB7â€Based Active Layers: High Efficiency Thickâ€Film Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1601344.	19.5	45
164	Energy-effectively printed all-polymer solar cells exceeding 8.61% efficiency. Nano Energy, 2018, 46, 428-435.	16.0	45
165	Green solvent-processed efficient non-fullerene organic solar cells enabled by low-bandgap copolymer donors with EDOT side chains. Journal of Materials Chemistry A, 2019, 7, 716-726.	10.3	45
166	Melamine-Doped Cathode Interlayer Enables High-Efficiency Organic Solar Cells. ACS Energy Letters, 2021, 6, 3582-3589.	17.4	45
167	Hindrance-Functionalized π-Stacked Polymer Host Materials of the Cardo-Type Carbazole–Fluorene Hybrid for Solution-Processable Blue Electrophosphorescent Devices. Macromolecules, 2011, 44, 4589-4595.	4.8	44
168	Isomeric Effects of Solution Processed Ladderâ€Type Nonâ€Fullerene Electron Acceptors. Solar Rrl, 2017, 1, 1700107.	5.8	44
169	High Performing Ternary Solar Cells through Förster Resonance Energy Transfer between Nonfullerene Acceptors. ACS Applied Materials & Interfaces, 2017, 9, 26928-26936.	8.0	44
170	Evaluation of Small Molecules as Front Cell Donor Materials for Highâ€Efficiency Tandem Solar Cells. Advanced Materials, 2016, 28, 7008-7012.	21.0	43
171	Self-Regulated Nanoparticle Assembly at Liquid/Liquid Interfaces: A Route to Adaptive Structuring of Liquids. Langmuir, 2017, 33, 7994-8001.	3.5	43
172	Toward High Efficiency Polymer Solar Cells: Influence of Local Chemical Environment and Morphology. Advanced Energy Materials, 2017, 7, 1601081.	19.5	43
173	Side-chain modification of polyethylene glycol on conjugated polymers for ternary blend all-polymer solar cells with efficiency up to 9.27%. Science China Chemistry, 2018, 61, 427-436.	8.2	43
174	The Good Host: Formation of Discrete One-Dimensional Fullerene "Channels―in Well-Ordered Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2- <i>b</i>]thiophene) Oligomers. Journal of the American Chemical Society, 2014, 136, 18120-18130.	13.7	42
175	Probing and Controlling Liquid Crystal Helical Nanofilaments. Nano Letters, 2015, 15, 3420-3424.	9.1	42
176	An Effective Strategy to Tune Supramolecular Interaction via a Spiro-Bridged Spacer in Oligothiophene-S,S-dioxides and Their Anomalous Photoluminescent Behavior. Organic Letters, 2007, 9, 1619-1622.	4.6	41
177	A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy loss. Journal of Materials Chemistry A, 2018, 6, 18469-18478.	10.3	40
178	Efficient Charge Transport in Assemblies of Surfactantâ€Stabilized Semiconducting Nanoparticles. Advanced Materials, 2013, 25, 6411-6415.	21.0	39
179	Dual Functional Zwitterionic Fullerene Interlayer for Efficient Inverted Polymer Solar Cells. Advanced Energy Materials, 2015, 5, 1500405.	19.5	39
180	A green route to a novel hyperbranched electrolyte interlayer for nonfullerene polymer solar cells with over 11% efficiency. Chemical Communications, 2018, 54, 563-566.	4.1	39

#	Article	IF	CITATIONS
181	Efficient modulation of end groups for the asymmetric small molecule acceptors enabling organic solar cells with over 15% efficiency. Journal of Materials Chemistry A, 2020, 8, 5927-5935.	10.3	39
182	Pyrene functioned diarylfluorenes as efficient solution processable light emitting molecular glass. Organic Electronics, 2009, 10, 256-265.	2.6	38
183	Solution-processed bulk heterojunction solar cells based on porphyrin small molecules with very low energy losses comparable to perovskite solar cells and high quantum efficiencies. Journal of Materials Chemistry C, 2016, 4, 3843-3850.	5.5	37
184	Head-to-Head Linkage Containing Dialkoxybithiophene-Based Polymeric Semiconductors for Polymer Solar Cells with Large Open-Circuit Voltages. Macromolecules, 2017, 50, 137-150.	4.8	37
185	Poly(3-hexylthiophene)-based non-fullerene solar cells achieve high photovoltaic performance with small energy loss. Journal of Materials Chemistry A, 2017, 5, 16573-16579.	10.3	37
186	A universal nonfullerene electron acceptor matching with different band-gap polymer donors for high-performance polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 6874-6881.	10.3	37
187	Organic Polymer Nanoparticles with Primary Ammonium Salt as Potent Antibacterial Nanomaterials. ACS Applied Materials & Interfaces, 2020, 12, 21254-21262.	8.0	36
188	Chalcogenoarene semiconductors: new ideas from old materials. Journal of Materials Chemistry, 2011, 21, 1329-1337.	6.7	35
189	High-Efficiency Small Molecule-Based Bulk-Heterojunction Solar Cells Enhanced by Additive Annealing. ACS Applied Materials & Interfaces, 2015, 7, 21495-21502.	8.0	35
190	An electron-rich 2-alkylthieno[3,4-b]thiophene building block with excellent electronic and morphological tunability for high-performance small-molecule solar cells. Journal of Materials Chemistry A, 2016, 4, 17354-17362.	10.3	35
191	Optimizing Lightâ€Harvesting Polymers via Side Chain Engineering. Advanced Functional Materials, 2015, 25, 6458-6469.	14.9	33
192	Regioisomeric Non-Fullerene Acceptors Containing Fluorobenzo[<i>c</i>][1,2,5]thiadiazole Unit for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 37087-37093.	8.0	33
193	Hereditary Character of Alkyl-Chain Length Effect on β-Phase Conformation from Polydialkylfluorenes to Bulky Polydiarylfluorenes. Journal of Physical Chemistry C, 2017, 121, 19087-19096.	3.1	33
194	Donor–Acceptor–Acceptor's Molecules for Vacuumâ€Deposited Organic Photovoltaics with Efficiency Exceeding 9%. Advanced Energy Materials, 2018, 8, 1703603.	19.5	33
195	Simultaneous spin-coating and solvent annealing: manipulating the active layer morphology to a power conversion efficiency of 9.6% in polymer solar cells. Materials Horizons, 2015, 2, 592-597.	12.2	32
196	Systematic Fluorination of P3HT: Synthesis of P(3HT- <i>co</i> -3H4FT)s by Direct Arylation Polymerization, Characterization, and Device Performance in OPVs. Macromolecules, 2016, 49, 3028-3037.	4.8	32
197	Solventâ€Polarityâ€Induced Active Layer Morphology Control in Crystalline Diketopyrrolopyrroleâ€Based Low Band Gap Polymer Photovoltaics. Advanced Energy Materials, 2014, 4, 1300834.	19.5	30
198	Phenylene-bridged perylenediimide-porphyrin acceptors for non-fullerene organic solar cells. Sustainable Energy and Fuels, 2018, 2, 2616-2624.	4.9	30

#	Article	IF	CITATIONS
199	Highâ€Performance Polymer Solar Cells Achieved by Introducing Sideâ€Chain Heteroatom on Smallâ€Molecule Electron Acceptor. Macromolecular Rapid Communications, 2019, 40, e1800393.	3.9	30
200	A perylene diimide-containing acceptor enables high fill factor in organic solar cells. Chemical Communications, 2020, 56, 11433-11436.	4.1	30
201	A Kinetic Model for Nanocrystal Morphology Evolution. ChemPhysChem, 2007, 8, 703-711.	2.1	28
202	Hyperbranched framework of interrupted Ï€â€conjugated polymers endâ€capped with high carrierâ€mobility moieties for stable lightâ€emitting materials with low driving voltage. Journal of Polymer Science Part A, 2009, 47, 6451-6462.	2.3	28
203	Small Molecules with Asymmetric 4-Alkyl-8-alkoxybenzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene as the Central Unit for High-Performance Solar Cells with High Fill Factors. Chemistry of Materials, 2017, 29, 3694-3703.	6.7	28
204	High-efficiency quaternary polymer solar cells enabled with binary fullerene additives to reduce nonfullerene acceptor optical band gap and improve carriers transport. Science China Chemistry, 2018, 61, 1609-1618.	8.2	28
205	Simple thiazole-centered oligothiophene donor enables 15.4% efficiency all small molecule organic solar cells. Journal of Materials Chemistry A, 2022, 10, 3009-3017.	10.3	28
206	Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene. Nanotechnology, 2016, 27, 284001.	2.6	27
207	High-Performance Organic Field-Effect Transistors Fabricated Based on a Novel Ternary π-Conjugated Copolymer. ACS Applied Materials & Interfaces, 2017, 9, 7315-7321.	8.0	27
208	Investigation of the effect of large aromatic fusion in the small molecule backbone on the solar cell device fill factor. Journal of Materials Chemistry A, 2015, 3, 16679-16687.	10.3	26
209	Efficient and thermally stable all-polymer solar cells based on a fluorinated wide-bandgap polymer donor with high crystallinity. Journal of Materials Chemistry A, 2018, 6, 16403-16411.	10.3	26
210	Highâ€Performance Green Solvent Processed Ternary Blended Allâ€Polymer Solar Cells Enabled by Complementary Absorption and Improved Morphology. Solar Rrl, 2018, 2, 1800196.	5.8	26
211	Tuning charge transport from unipolar (n-type) to ambipolar in bis(naphthalene diimide) derivatives by introducing l€-conjugated heterocyclic bridging moieties. Journal of Materials Chemistry C, 2016, 4, 7230-7240.	5.5	25
212	A Designed Ladderâ€Type Heteroarene Benzodi(Thienopyran) for Highâ€Performance Fullereneâ€Free Organic Solar Cells. Solar Rrl, 2017, 1, 1700165.	5.8	25
213	Polymer interface engineering enabling high-performance perovskite solar cells with improved fill factors of over 82%. Journal of Materials Chemistry C, 2020, 8, 5467-5475.	5.5	25
214	Nanomechanical Imaging of the Diffusion of Fullerene into Conjugated Polymer. ACS Nano, 2017, 11, 8660-8667.	14.6	24
215	Systematic investigation of self-organization behavior in supramolecular π-conjugated polymer for multi-color electroluminescence. Journal of Materials Chemistry C, 2018, 6, 1535-1542.	5.5	24
216	Guiding kinetic trajectories between jammed and unjammed states in 2D colloidal nanocrystal-polymer assemblies with zwitterionic ligands. Science Advances, 2018, 4, eaap8045.	10.3	24

#	Article	IF	CITATIONS
217	Tailoring the molecular geometry of polyfluoride perylene diimide acceptors towards efficient organic solar cells. Journal of Materials Chemistry C, 2020, 8, 8224-8233.	5.5	24
218	Ternary organic solar cells with 16.88% efficiency enabled by a twisted perylene diimide derivative to enhance the open-circuit voltage. Journal of Materials Chemistry C, 2021, 9, 3826-3834.	5.5	24
219	Low band-gap conjugated polymer based on diketopyrrolopyrrole units and its application in organic photovoltaic cells. Journal of Materials Chemistry A, 2017, 5, 10416-10423.	10.3	23
220	Preparation of non-fullerene acceptors with a multi-asymmetric configuration in a one-pot reaction for organic solar cells. Journal of Materials Chemistry C, 2020, 8, 17229-17236.	5.5	23
221	Bulk Charge Carrier Transport in Push–Pull Type Organic Semiconductor. ACS Applied Materials & Interfaces, 2014, 6, 20904-20912.	8.0	22
222	Effect of Pendant Functionality in Thieno[3,4- <i>b</i>]thiophene- <i>alt</i> -benzodithiophene Polymers for OPVs. Chemistry of Materials, 2015, 27, 443-449.	6.7	22
223	All polymer solar cells with diketopyrrolopyrrole-polymers as electron donor and a naphthalenediimide-polymer as electron acceptor. RSC Advances, 2016, 6, 35677-35683.	3.6	22
224	Low-Bandgap Small-Molecule Donor Material Containing Thieno[3,4- <i>b</i>]thiophene Moiety for High-Performance Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 3661-3668.	8.0	22
225	Improved Efficiency of Polymer Solar Cells by Modifying the Side Chain of Wide-Band Gap Conjugated Polymers Containing Pyrrolo[3,4- <i>f</i>]benzotriazole-5,7(6 <i>H</i>)-dione Moiety. ACS Applied Materials & Interfaces, 2018, 10, 22495-22503.	8.0	22
226	Enhanced efficiency and stability of nonfullerene ternary polymer solar cells based on a spontaneously assembled active layer: the role of a high mobility small molecular electron acceptor. Journal of Materials Chemistry C, 2020, 8, 6196-6202.	5.5	22
227	Effect of Side Groups on the Photovoltaic Performance Based on Porphyrin–Perylene Bisimide Electron Acceptors. ACS Applied Materials & Interfaces, 2018, 10, 32454-32461.	8.0	21
228	Novel photoluminescent polymers containing fluorene and 2,4,6-triphenyl pyridine moieties: Effects of noncoplanar molecular architecture on the electro-optical properties of parent matrix. Polymer, 2008, 49, 4369-4377.	3.8	20
229	Macroscopic Vertical Alignment of Nanodomains in Thin Films of Semiconductor Amphiphilic Block Copolymers. ACS Nano, 2013, 7, 6069-6078.	14.6	20
230	Structural modification of thieno[3,4-c]pyrrole-4,6-dione: structure–property relationships and application in solution-processed small-molecule organic solar cells. Journal of Materials Chemistry A, 2013, 1, 5875.	10.3	20
231	Tuning the energy gap of conjugated polymer zwitterions for efficient interlayers and solar cells. Journal of Polymer Science Part A, 2015, 53, 327-336.	2.3	20
232	1,3-Bis(thieno[3,4- <i>b</i>]thiophen-6-yl)-4 <i>H</i> -thieno[3,4- <i>c</i>]pyrrole-4,6(5 <i>H</i>)-dione-Based Small-Molecule Donor for Efficient Solution-Processed Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 6213-6219.	8.0	20
233	Fine-tuning solid state packing and significantly improving photovoltaic performance of conjugated polymers through side chain engineering via random polymerization. Journal of Materials Chemistry A, 2017, 5, 5585-5593.	10.3	20
234	Efficient and 1,8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive. Nano Research, 2017, 10, 3765-3774.	10.4	20

#	Article	IF	CITATIONS
235	Enhancing phase separation with a conformation-locked nonfullerene acceptor for over 14.4% efficiency solar cells. Journal of Materials Chemistry C, 2019, 7, 13279-13286.	5.5	20
236	Reversible, Self Cross-Linking Nanowires from Thiol-Functionalized Polythiophene Diblock Copolymers. ACS Applied Materials & Interfaces, 2014, 6, 7705-7711.	8.0	19
237	Large active layer thickness toleration of high-efficiency small molecule solar cells. Journal of Materials Chemistry A, 2015, 3, 22274-22279.	10.3	19
238	Efficient all-polymer solar cells based on a narrow-bandgap polymer acceptor. Journal of Materials Chemistry C, 2020, 8, 16180-16187.	5.5	19
239	Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids. Chemical Science, 2014, 5, 2368-2373.	7.4	18
240	Tuning the molecular geometry and packing mode of non-fullerene acceptors by altering the bridge atoms towards efficient organic solar cells. Materials Chemistry Frontiers, 2020, 4, 2462-2471.	5.9	18
241	A novel complementary absorbing donor–acceptor pair in block copolymers based on single material organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 2993-2998.	10.3	17
242	Crystallinity and Morphology Effects on a Solvent-Processed Solar Cell Using a Triarylamine-Substituted Squaraine. ACS Applied Materials & Interfaces, 2014, 6, 11376-11384.	8.0	17
243	Ethynylene-linked benzo[1,2-b:4,5-bâ€2]dithiophene-alt-diketopyrrolopyrrole alternating copolymer: optoelectronic properties, film morphology and photovoltaic applications. Journal of Materials Chemistry A, 2015, 3, 12972-12981.	10.3	17
244	Synthesis of fluorinated diphenyl-diketopyrrolopyrrole derivatives as new building blocks for conjugated copolymers. Polymer Chemistry, 2016, 7, 3311-3324.	3.9	17
245	Macroscopically ordered hexagonal arrays by directed self-assembly of block copolymers with minimal topographic patterns. Nanoscale, 2017, 9, 14888-14896.	5.6	17
246	A new approach to efficiency enhancement of polymer light-emitting diodes by deposition of anode buffer layers in the presence of additives. Organic Electronics, 2009, 10, 1562-1570.	2.6	16
247	Nondilute 1,2-dichloroethane solution of poly(9,9-dioctylfluorene-2,7-diyl): A study on the aggregation process. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1311-1318.	3.8	16
248	Ternary non-fullerene polymer solar cells with a high crystallinity n-type organic semiconductor as the second acceptor. Journal of Materials Chemistry A, 2018, 6, 24814-24822.	10.3	16
249	Short-axis substitution approach on ladder-type benzodithiophene-based electron acceptor toward highly efficient organic solar cells. Science China Chemistry, 2018, 61, 1405-1412.	8.2	16
250	Decoupling Complex Multi‣engthâ€Scale Morphology in Nonâ€Fullerene Photovoltaics with Nitrogen Kâ€Edge Resonant Soft Xâ€ray Scattering. Advanced Materials, 2022, 34, e2107316.	21.0	16
251	Nonfused Ring Electron Acceptors for Efficient Organic Solar Cells Enabled by Multiple Intramolecular Conformational Locks. ACS Applied Energy Materials, 2022, 5, 5136-5145.	5.1	16
252	Carbazole endâ€capped pyrene starburst with enhanced electrochemical stability and device performance. Journal of Polymer Science Part A, 2010, 48, 4943-4949.	2.3	15

#	Article	IF	CITATIONS
253	Enhancing Performances of Solutionâ€Processed Inverted Ternary Smallâ€Molecule Organic Solar Cells: Manipulating the Hostâ€Guest Donors and Acceptor Interaction. Solar Rrl, 2017, 1, 1600003.	5.8	15
254	Orthogonally Aligned Block Copolymer Line Patterns on Minimal Topographic Patterns. ACS Applied Materials & Interfaces, 2018, 10, 8324-8332.	8.0	15
255	Improved photocurrent and efficiency of non-fullerene organic solar cells despite higher charge recombination. Journal of Materials Chemistry A, 2018, 6, 957-962.	10.3	15
256	Overcoming the morphological and efficiency limit in all-polymer solar cells by designing conjugated random copolymers containing a naphtho[1,2- <i>c</i> 5,6- <i>c</i> ′]bis([1,2,5]thiadiazole)] moiety. Journal of Materials Chemistry A, 2018, 6, 23295-23300.	10.3	15
257	A 1 â€A 2 Type Wide Bandgap Polymers for Highâ€Performance Polymer Solar Cells: Energy Loss and Morphology. Solar Rrl, 2019, 3, 1800291.	5.8	15
258	A naphthodithiophene-based nonfullerene acceptor for high-performance polymer solar cells with a small energy loss. Journal of Materials Chemistry C, 2020, 8, 6513-6520.	5.5	15
259	Isomerizing thieno[3,4- <i>b</i>]thiophene-based near-infrared non-fullerene acceptors towards efficient organic solar cells. Journal of Materials Chemistry C, 2020, 8, 4357-4364.	5.5	15
260	Design of Nearâ€Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for Highâ€Performance Semitransparent Ternary Organic Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	15
261	Rod-like pyrene–perylene bisimide molecular triads: Synthesis and photophysical properties. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 211, 115-122.	3.9	14
262	Formation of H* Phase in Chiral Block Copolymers: Morphology Evolution As Revealed by Time-Resolved X-ray Scattering. Macromolecules, 2013, 46, 474-483.	4.8	14
263	Isolated large π systems in pyrene–fluorene derivatives for intramolecular through-space interaction in organic semiconductors. Organic Electronics, 2013, 14, 782-789.	2.6	14
264	Solution-processed small molecules with ethynylene bridges for highly efficient organic solar cells. Journal of Materials Chemistry A, 2016, 4, 14720-14728.	10.3	14
265	Applying the heteroatom effect of chalcogen for high-performance small-molecule solar cells. Journal of Materials Chemistry A, 2017, 5, 3425-3433.	10.3	14
266	PCE11-based polymer solar cells with high efficiency over 13% achieved by room-temperature processing. Journal of Materials Chemistry A, 2020, 8, 8661-8668.	10.3	13
267	Complex multilength-scale morphology in organic photovoltaics. Trends in Chemistry, 2022, 4, 699-713.	8.5	13
268	Alkylthio substituted thiophene modified benzodithiophene-based highly efficient photovoltaic small molecules. Organic Electronics, 2016, 28, 263-268.	2.6	12
269	Fabrication of compact and stable perovskite films with optimized precursor composition in the fast-growing procedure. Science China Materials, 2017, 60, 608-616.	6.3	12
270	Two Thieno[3,2―b]thiopheneâ€Based Small Molecules as Bifunctional Photoactive Materials for Organic Solar Cells. Solar Rrl, 2018, 2, 1700179.	5.8	12

#	Article	IF	CITATIONS
271	Alternating copolymers based on perylene bisimide and oligo(p-phenylene ethynylene) units: Synthesis, characterization, and photoinduced energy and electron transfer processes of a new class of donor–acceptor systems. Reactive and Functional Polymers, 2009, 69, 117-123.	4.1	11
272	Solventâ€Assisted Orientation of Poly(3â€hexylthiophene)â€Functionalized CdSe Nanorods Under an Electric Field. Macromolecular Chemistry and Physics, 2014, 215, 1647-1653.	2.2	11
273	Effects of alkyl chains on intermolecular packing and device performance in small molecule based organic solar cells. Dyes and Pigments, 2017, 141, 262-268.	3.7	11
274	Developing Highâ€Performance Electronâ€Rich Unit End apped Wide Bandgap Oligomeric Donor by Weak Electronâ€Deficient Central Core Strategy. Solar Rrl, 2018, 2, 1700212.	5.8	11
275	Stable and good color purity white lightâ€emitting devices based on random fluorene/spirofluorene copolymers doped with iridium complex. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 180-188.	2.1	10
276	Enhanced crystalline morphology of a ladder-type polymer bulk-heterojunction device by blade-coating. Nanoscale, 2015, 7, 10936-10939.	5.6	10
277	Ternary polymer solar cells based-on two polymer donors with similar HOMO levels and an organic acceptor with absorption extending to 850†nm. Organic Electronics, 2018, 62, 89-94.	2.6	10
278	Morphology Evolution Induced by Sequential Annealing Enabling Enhanced Efficiency in All-Small Molecule Solar Cells. ACS Applied Energy Materials, 2021, 4, 4234-4241.	5.1	10
279	Synthesis and Characterization of Novel Monodisperse Starburst Oligo(fluoreneethynylene) Based on Truxene Moiety. Chemistry Letters, 2008, 37, 178-179.	1.3	9
280	Copolymerization of 3,3′′′-didodecylquaterthiophene with fluorene and silole units: improving photovoltaic performance by tuning energy levels. Polymer Chemistry, 2012, 3, 2794.	3.9	9
281	Applying Thienyl Side Chains and Different π-Bridge to Aromatic Side-Chain Substituted Indacenodithiophene-Based Small Molecule Donors for High-Performance Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 19998-20009.	8.0	9
282	Electronic and Morphological Studies of Conjugated Polymers Incorporating a Disk-Shaped Polycyclic Aromatic Hydrocarbon Unit. ACS Applied Materials & Interfaces, 2015, 7, 20034-20045.	8.0	8
283	Branched 2â€Ethylhexyl Substituted Indacenodithieno[3,2â€b]Thiophene Core Enabling Wideâ€Bandgap Small Molecule for Fullereneâ€Based Organic Solar Cells with 9.15% Efficiency: Effect of Length and Position of Fused Polycyclic Aromatic Units. Solar Rrl, 2018, 2, 1800108.	5.8	8
284	Quaternary Solar Cells with 12.5% Efficiency Enabled with Nonâ€Fullerene and Fullerene Acceptor Guests to Improve Open Circuit Voltage and Film Morphology. Macromolecular Rapid Communications, 2019, 40, 1900353.	3.9	8
285	Two novel oligomers based on fluorene and pyridine: Correlation between the structures and optoelectronic properties. Journal of Polymer Science Part A, 2008, 46, 1548-1558.	2.3	7
286	A Simple, Smallâ€Bandgap Porphyrinâ€Based Conjugated Polymer for Application in Organic Electronics. Macromolecular Rapid Communications, 2018, 39, e1800546.	3.9	7
287	Modulating Structure Ordering via Side-Chain Engineering of Thieno[3,4- <i>b</i>]thiophene-Based Electron Acceptors for Efficient Organic Solar Cells with Reduced Energy Losses. ACS Applied Materials & Interfaces, 2019, 11, 35193-35200.	8.0	7
288	Interpenetrating morphology based on highly crystalline small molecule and PCBM blends. Journal of Materials Chemistry C, 2014, 2, 9368-9374.	5.5	6

#	Article	IF	CITATIONS
289	The Dispersion Measurement of Quadratic Electrooptic Effect of a Linear Conjugated Polymer. IEEE Journal of Quantum Electronics, 2009, 45, 542-546.	1.9	5
290	Robust polythiophene nanowires cross-linked with functional fullerenes. Journal of Materials Chemistry C, 2014, 2, 9674-9682.	5.5	5
291	Solutionâ€Processable Platinumâ€Acetylideâ€based Small Molecular Bulk Heterojunction Solar Cells. Chinese Journal of Chemistry, 2015, 33, 917-924.	4.9	5
292	Efficient Small-Molecule-Based Inverted Organic Solar Cells With Conjugated Polyelectrolyte as a Cathode Interlayer. IEEE Journal of Photovoltaics, 2015, 5, 1118-1124.	2.5	5
293	Vinazene end-capped acceptor-donor-acceptor type small molecule for solution-processed organic solar cells. Organic Electronics, 2017, 44, 11-19.	2.6	5
294	Highly efficient Co centers functionalized by nitrogen-doped carbon for the chemical fixation of CO2. RSC Advances, 2020, 10, 42408-42412.	3.6	5
295	Probing morphology and chemistry in complex soft materials with in situ resonant soft x-ray scattering. Journal of Physics Condensed Matter, 2021, 33, 313001.	1.8	5
296	Synthesis, characterization and third-order nonlinear optical properties of novel hyperbranched donor–acceptor polyfluorenes based on 1,3,6,8-tertsubstituted carbazole core. Reactive and Functional Polymers, 2013, 73, 828-832.	4.1	4
297	Stericâ€Hindrance Modulation toward Highâ€Performance 1,3â€Bis(thieno[3,4â€ <i>b</i>]thiophenâ€6â€yl)â€4 <i>H</i> â€thieno[3,4â€ <i>c</i>]pyrroleâ€4,6(5 <i>H</i>) Polymer Solar Cells with Enhanced Openâ€Circuit Voltage. Advanced Electronic Materials, 2017, 3, 1700213.	â€dioneâ€	Based
298	Sideâ€Chain Optimization of Phthalimideâ^'Bithiophene Copolymers for Efficient Allâ€Polymer Solar Cells with Large Fill Factors. Asian Journal of Organic Chemistry, 2018, 7, 2239-2247.	2.7	4
299	Disorder-to-order transitions induced by alkyne/azide click chemistry in diblock copolymer thin films. Soft Matter, 2012, 8, 5273.	2.7	3
300	Alternating pyrene–fluorene linear copolymers: Influence of non-conjugated and conjugated pyrene on thermal and optoelectronic properties. Synthetic Metals, 2013, 174, 33-41.	3.9	3
301	Ï€-Conjugated Molecules Based on Truxene Cores and Pyrene Substitution: Synthesis and Properties. Journal of Chemical Research, 2013, 37, 242-247.	1.3	3
302	Highly oriented and ordered microstructures in block copolymer films. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1369-1375.	2.1	3
303	Synthesis and Application of Asymmetry Diphenylketone Photoinitiators. ChemistrySelect, 2021, 6, 4292-4297.	1.5	3
304	Measurement of the second hyperpolarizability of linear conjugated polymer based on attenuated-total-reflection technique. Optics Letters, 2008, 33, 887.	3.3	2
305	Simultaneous evaluation of the linear and quadratic electro-optic coefficients of the nonlinear optical polymer by attenuated-total-reflection technique. Journal of Applied Physics, 2011, 109, .	2.5	2
306	Regulation of excitation transitions by molecular design endowing full-color-tunable emissions with unexpected high quantum yields for bioimaging application. Science China Chemistry, 2018, 61, 418-426.	8.2	2

#	Article	IF	CITATIONS
307	Synthesis and application of new S-benzoheterocycle thiobenzoates photoinitiators. Research on Chemical Intermediates, 2020, 46, 3717-3726.	2.7	2
308	A novel A–DAâ€2D–A bifunctional small molecule for organic solar cell applications with impressive photovoltaic performance. Journal of Materials Chemistry A, 2022, 10, 16497-16505.	10.3	2
309	Printing Fabrication of Bulk Heterojunction Solar Cells and In Situ Morphology Characterization. Journal of Visualized Experiments, 2017, , .	0.3	1
310	3D Structural Model of High-Performance Non-Fullerene Polymer Solar Cells as Revealed by High-Resolution AFM. ACS Applied Materials & amp; Interfaces, 2017, 9, 24451-24455.	8.0	1
311	Bimolecular crystal instability and morphology of bulk heterojunction blends in organic and perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 11695-11703.	5.5	1
312	Synthesis and Optical Properties of Ethynylene-Linked Starburst Oligofluorene Based on Hexahexyltruxene. Synlett, 2007, 2007, 3145-3148.	1.8	0
313	A further exploitation of the attenuated-total-reflection technique to measure the complex second hyperpolarizability for the quadratic electro-optic effect of a linear conjugated polymer. Europhysics Letters, 2009, 87, 24003.	2.0	0
314	Perovskite Solar Cells Processed by Solution Nanotechnology. , 2019, , 119-174.		0