Laura Rodriguez-Lorenzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2545754/publications.pdf

Version: 2024-02-01

69 papers

5,226 citations

147801 31 h-index 71 g-index

73 all docs

73 docs citations

times ranked

73

9250 citing authors

#	Article	IF	Citations
1	Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chemical Society Reviews, 2015, 44, 6287-6305.	38.1	771
2	Zeptomol Detection Through Controlled Ultrasensitive Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2009, 131, 4616-4618.	13.7	520
3	Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chemical Reviews, 2017, 117, 11476-11521.	47.7	464
4	Tuning Size and Sensing Properties in Colloidal Gold Nanostars. Langmuir, 2010, 26, 14943-14950.	3.5	447
5	Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nature Materials, 2012, 11, 604-607.	27.5	395
6	Surface Enhanced Raman Scattering Using Star-Shaped Gold Colloidal Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 7336-7340.	3.1	224
7	Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. Journal of the Royal Society Interface, 2010, 7, S435-50.	3.4	180
8	Design of SERS-Encoded, Submicron, Hollow Particles Through Confined Growth of Encapsulated Metal Nanoparticles. Journal of the American Chemical Society, 2009, 131, 2699-2705.	13.7	144
9	Multiplex optical sensing with surface-enhanced Raman scattering: A critical review. Analytica Chimica Acta, 2012, 745, 10-23.	5.4	130
10	Intracellular mapping with SERS-encoded gold nanostars. Integrative Biology (United Kingdom), 2011, 3, 922.	1.3	127
11	Reshaping and LSPR tuning of Au nanostars in the presence of CTAB. Journal of Materials Chemistry, 2011, 21, 11544.	6.7	108
12	Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: The case of cocaine. Nanoscale, 2009, 1, 153.	5.6	98
13	Translocation of gold nanoparticles across the lung epithelial tissue barrier: Combining in vitro and in silico methods to substitute in vivo experiments. Particle and Fibre Toxicology, 2015, 12, 18.	6.2	82
14	Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 633-644.	3.3	78
15	Reversible assembly of metal nanoparticles induced by penicillamine. Dynamic formation of SERS hot spots. Journal of Materials Chemistry, 2011, 21, 16880.	6.7	77
16	Characterizing nanoparticles in complex biological media and physiological fluids with depolarized dynamic light scattering. Nanoscale, 2015, 7, 5991-5997.	5.6	75
17	Growth of Sharp Tips on Gold Nanowires Leads to Increased Surface-Enhanced Raman Scattering Activity. Journal of Physical Chemistry Letters, 2010, 1, 24-27.	4.6	74
18	Bifunctional Nanocomposites with Long-Term Stability as SERS Optical Accumulators for Ultrasensitive Analysis. Journal of Physical Chemistry C, 2009, 113, 3373-3377.	3.1	68

#	Article	IF	CITATIONS
19	Nanoparticle administration method in cell culture alters particle-cell interaction. Scientific Reports, 2019, 9, 900.	3.3	65
20	Quantifying nanoparticle cellular uptake: which method is best?. Nanomedicine, 2017, 12, 1095-1099.	3.3	61
21	Quantification of nanoparticles at the single-cell level: an overview about state-of-the-art techniques and their limitations. Nanomedicine, 2014, 9, 1885-1900.	3.3	60
22	Recyclable magnetic covalent organic framework for the extraction of marine biotoxins. Nanoscale, 2019, 11, 6072-6079.	5.6	57
23	Aerosol Delivery of Functionalized Gold Nanoparticles Target and Activate Dendritic Cells in a 3D Lung Cellular Model. ACS Nano, 2017, 11, 375-383.	14.6	55
24	Fluorescenceâ€Encoded Gold Nanoparticles: Library Design and Modulation of Cellular Uptake into Dendritic Cells. Small, 2014, 10, 1341-1350.	10.0	54
25	Cellulose Nanocrystals with Tethered Polymer Chains: Chemically Patchy versus Uniform Decoration. ACS Macro Letters, 2017, 6, 892-897.	4.8	47
26	Gold Nanostars for the Detection of Foodborne Pathogens via Surface-Enhanced Raman Scattering Combined with Microfluidics. ACS Applied Nano Materials, 2019, 2, 6081-6086.	5.0	47
27	Interaction of biomedical nanoparticles with the pulmonary immune system. Journal of Nanobiotechnology, 2017, 15, 6.	9.1	45
28	Pulmonary delivery of cationic gold nanoparticles boost antigen-specific CD4 + T Cell Proliferation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1815-1826.	3.3	42
29	Biodistribution of single and aggregated gold nanoparticles exposed to the human lung epithelial tissue barrier at the air-liquid interface. Particle and Fibre Toxicology, 2017, 14, 49.	6.2	38
30	Plasmonic nanoparticles and their characterization in physiological fluids. Colloids and Surfaces B: Biointerfaces, 2016, 137, 39-49.	5.0	35
31	In vitro dosimetry of agglomerates. Nanoscale, 2014, 6, 7325-7331.	5.6	33
32	Dynamic Depolarized Light Scattering of Small Round Plasmonic Nanoparticles: When Imperfection is Only Perfect. Journal of Physical Chemistry C, 2014, 118, 17968-17974.	3.1	33
33	Current <i>in vitro </i> approaches to assess nanoparticle interactions with lung cells. Nanomedicine, 2016, 11, 2457-2469.	3.3	31
34	Microporous Plasmonic Capsules as Stable Molecular Sieves for Direct SERS Quantification of Small Pollutants in Natural Waters. ChemNanoMat, 2019, 5, 46-50.	2.8	31
35	Nanoparticle Polydispersity Can Strongly Affect In Vitro Dose. Particle and Particle Systems Characterization, 2015, 32, 321-333.	2.3	30
36	A hydrofluoric acid-free method to dissolve and quantify silica nanoparticles in aqueous and solid matrices. Scientific Reports, 2019, 9, 7938.	3.3	28

#	Article	IF	CITATIONS
37	Multifuntional Gold Nanoparticles for the SERS Detection of Pathogens Combined with a LAMP–in–Microdroplets Approach. Materials, 2020, 13, 1934.	2.9	28
38	SERS Study of the Controllable Release of Nitric Oxide from Aromatic Nitrosothiols on Bimetallic, Bifunctional Nanoparticles Supported on Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2009, 1, 56-59.	8.0	23
39	Decoupling the shape parameter to assess gold nanorod uptake by mammalian cells. Nanoscale, 2016, 8, 16416-16426.	5.6	23
40	Polymer-Coated Gold Nanospheres Do Not Impair the Innate Immune Function of Human B Lymphocytes <i>in Vitro</i> . ACS Nano, 2019, 13, 6790-6800.	14.6	23
41	A new angle on dynamic depolarized light scattering: number-averaged size distribution of nanoparticles in focus. Nanoscale, 2016, 8, 15813-15821.	5.6	22
42	Assessing the Stability of Fluorescently Encoded Nanoparticles in Lysosomes by Using Complementary Methods. Angewandte Chemie - International Edition, 2017, 56, 13382-13386.	13.8	22
43	Improved Photocatalyzed Degradation of Phenol, as a Model Pollutant, over Metal-Impregnated Nanosized TiO2. Nanomaterials, 2020, 10, 996.	4.1	22
44	Phase Transformation of Superparamagnetic Iron Oxide Nanoparticles via Thermal Annealing: Implications for Hyperthermia Applications. ACS Applied Nano Materials, 2019, 2, 4462-4470.	5.0	20
45	Exposure to silver nanoparticles affects viability and function of natural killer cells, mostly via the release of ions. Cell Biology and Toxicology, 2018, 34, 167-176.	5.3	17
46	Are TiO ₂ nanoparticles safe for photocatalysis in aqueous media?. Nanoscale Advances, 2020, 2, 4951-4960.	4.6	14
47	A comparative study of silver nanoparticle dissolution under physiological conditions. Nanoscale Advances, 2020, 2, 5760-5768.	4.6	13
48	Artificial Lysosomal Platform to Study Nanoparticle Long-term Stability. Chimia, 2019, 73, 55.	0.6	12
49	Distribution of polymer-coated gold nanoparticles in a 3D lung model and indication of apoptosis after repeated exposure. Nanomedicine, 2018, 13, 1169-1185.	3.3	11
50	Quantification of Carbon Nanotube Doses in Adherent Cell Culture Assays Using UV-VIS-NIR Spectroscopy. Nanomaterials, 2019, 9, 1765.	4.1	11
51	Revealing the Role of Epithelial Mechanics and Macrophage Clearance during Pulmonary Epithelial Injury Recovery in the Presence of Carbon Nanotubes. Advanced Materials, 2018, 30, e1806181.	21.0	10
52	A SERS-based 3D nanobiosensor: towards cell metabolite monitoring. Materials Advances, 2020, 1, 1613-1621.	5.4	10
53	Distribution of Silica-Coated Silver/Gold Nanostars in Soft- and Hardwood Applying SERS-Based Imaging. Langmuir, 2016, 32, 274-283.	3.5	9
54	Nanoparticle Behaviour in Complex Media: Methods for Characterizing Physicochemical Properties, Evaluating Protein Corona Formation, and Implications for Biological Studies. Nanoscience and Technology, 2019, , 101-150.	1.5	8

#	Article	IF	CITATIONS
55	Field gradient imaging of nanoparticle systems: analysis of geometry and surface coating effects. Nanotechnology, 2009, 20, 095708.	2.6	7
56	Carbon nanodots: Opportunities and limitations to study their biodistribution at the human lung epithelial tissue barrier. Biointerphases, 2018, 13, 06D404.	1.6	7
57	A novel microfluidic system for the sensitive and cost-effective detection of okadaic acid in mussels. Analyst, The, 2021, 146, 2638-2645.	3.5	7
58	Assumption-free morphological quantification of single anisotropic nanoparticles and aggregates. Nanoscale, 2017, 9, 4918-4927.	5. 6	6
59	A rational and iterative process for targeted nanoparticle design and validation. Colloids and Surfaces B: Biointerfaces, 2018, 171, 579-589.	5.0	6
60	Particle Surfaces to Study Macrophage Adherence, Migration, and Clearance. Advanced Functional Materials, 2020, 30, 2002630.	14.9	6
61	Detection of Silver Nanoparticles in Seawater Using Surface-Enhanced Raman Scattering. Nanomaterials, 2021, 11, 1711.	4.1	6
62	Fundamentals of Biosensors and Detection Methods. Advances in Experimental Medicine and Biology, 2022, , 3-29.	1.6	5
63	The Choice of Nanoparticle Surfaceâ€Coupled Fluorescent Dyes Impacts Cellular Interaction. ChemNanoMat, 2022, 8, .	2.8	3
64	Surface-enhanced Raman scattering (SERS) nanoparticle sensors for biochemical and environmental sensing., 2014, , 197-230.		2
65	Assessing the Stability of Fluorescently Encoded Nanoparticles in Lysosomes by Using Complementary Methods. Angewandte Chemie, 2017, 129, 13567-13571.	2.0	2
66	A Bio-Inspired Amplification Cascade for the Detection of Rare Cancer Cells. Chimia, 2019, 73, 63-68.	0.6	2
67	Impurities in polyvinylpyrrolidone: the key factor in the synthesis of gold nanostars. Nanoscale Advances, 2022, 4, 387-392.	4.6	2
68	Encoded Particles: Fluorescence-Encoded Gold Nanoparticles: Library Design and Modulation of Cellular Uptake into Dendritic Cells (Small 7/2014). Small, 2014, 10, 1440-1440.	10.0	1
69	Effect of engineered nanoparticles on natural killer cells <i>in vitro</i> ., 2015, , .		1